

Graph-based Machine Learning for Wireless Communications

Santiago Segarra^{*}, Ananthram Swami[‡], Zhongyuan Zhao^{*}

*Rice University, $^{\ddagger}\mathrm{US}$ Army's DEVCOM Army Research Laboratory

May 5th, 2024

IEEE ICMLCN 2024 Stockholm, Sweden

The team

Santiago Segarra ECE, Rice

Ananthram Swami DEVCOM, ARL

Zhongyuan Zhao ECE, Rice

▶ Published 30+ papers in the area in the last 5 years

S. Segarra, A. Swami, Z. Zhao

Acknowledgements

- ▶ Rice University
 - \Rightarrow Arindam Chowdhury
 - \Rightarrow Boning Li
 - \Rightarrow Nicolas Zilberstein
 - \Rightarrow Qing An
 - \Rightarrow Ashu Sabharwal
 - \Rightarrow Rahman Doost-Mohammady

- Army Research Lab
 - \Rightarrow Gunjan Verma
 - \Rightarrow Jake Perazzone
 - \Rightarrow Kevin Chan
 - \Rightarrow Chirag Rao

By 5:30 pm today, you will be able to answer the following questions:

- ▶ What are graph neural networks (GNNs)?
- ▶ Why are GNNs well suited to tackle problems in wireless communications?
- ▶ How have GNNs been applied to specific problems?
- ▶ What are open problems/challenges to which you can contribute?

Outline

Part I: Introduction to Graph Neural Networks

- a) Graph-based ML and GNNs
- b) Graphs, GNNs, and Wireless Networks

Part II: GNNs at the Physical Layer

- a) Introduction to issues at the physical layer
- b) Optimal Power Allocation & Beamforming: SISO and MIMO cases
- c) Optimal Power Allocation: Federated Learning

Part III: Graph-based ML for Wireless Networking

- a) Introduction to networking tasks
- b) Link scheduling
- c) Graph-based actor-critic reinforcement learning framework
- d) GNNs for Backpressure Routing
- e) Digital twin of wireless networks

Conclusions and Future Directions

Part I: Introduction to Graph Neural Networks

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 6 / 116

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

Classical supervised learning setting

 \Rightarrow Learn a parametric function that estimates the labels $\Rightarrow \hat{y}_i = f_{\theta}(\mathbf{x}_i)$

S. Segarra, A. Swami, Z. Zhao

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

In some settings, relational structures between nodes are available
⇒ Friendship in social networks or inhibition in protein networks
⇒ Interference in comms networks

S. Segarra, A. Swami, Z. Zhao

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

▶ The structure also carries information about node labels

 \Rightarrow Estimate labels by combining both node features and graph structure

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 7 / 116

Graph-based ML leverages the network structure of the data to improve learning and processing of these data

 $\hat{y}_i = f_{\boldsymbol{\theta}}(\{\mathbf{x}_j\}_{j=1}^N; \mathbf{A})$

S. Segarra, A. Swami, Z. Zhao

Convert raw graph data into a low-dimensional vector representation

Convert raw graph data into a low-dimensional vector representation

▶ Once in \mathbb{R}^d , we can apply the whole ML machinery

- Embedding can be unsupervised
 - \Rightarrow "Closeness" in the graph is preserved as "closeness" in \mathbb{R}^d
- ▶ or supervised
 - \Rightarrow Trained together with the downstream classifier
- ▶ We can embed other graph elements beyond nodes

S. Segarra, A. Swami, Z. Zhao

▶ We can embed nodes, edges, subgraphs, and whole graphs

- ▶ "Shallow" embeddings (2014 2016): LINE, DeepWalk, node2vec
- ▶ O(N) parameters are needed \Rightarrow No parameter sharing
- ▶ Inherently transductive \Rightarrow needs retraining for new nodes
- ▶ No node features \Rightarrow key in many applications

- ▶ "Shallow" embeddings (2014 2016): LINE, DeepWalk, node2vec
- ▶ O(N) parameters are needed \Rightarrow No parameter sharing
- ▶ Inherently transductive \Rightarrow needs retraining for new nodes
- ▶ No node features \Rightarrow key in many applications
- ▶ "Deep" embeddings (2016 present): GCN, GraphSAGE, and many others
- ▶ Graph neural networks address limitations of shallow embeddings

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit $\ \Rightarrow$ Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit \Rightarrow Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \Rightarrow \mathcal{V}$: set of nodes, \mathcal{E} : set of edges

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit \Rightarrow Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \Rightarrow \mathcal{V}$: set of nodes, \mathcal{E} : set of edges
- ▶ Graph signals \Rightarrow Associate a value to each node $x : \mathcal{V} \to \mathbb{R}$

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit \Rightarrow Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \Rightarrow \mathcal{V}$: set of nodes, \mathcal{E} : set of edges
- Graph signals \Rightarrow Associate a value to each node $x : \mathcal{V} \to \mathbb{R}$
- Matrix representation \Rightarrow Adjacency matrix **A**

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit \Rightarrow Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \Rightarrow \mathcal{V}$: set of nodes, \mathcal{E} : set of edges
- Graph signals \Rightarrow Associate a value to each node $x : \mathcal{V} \to \mathbb{R}$
- Matrix representation \Rightarrow Adjacency matrix **A**

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit \Rightarrow Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \Rightarrow \mathcal{V}$: set of nodes, \mathcal{E} : set of edges
- Graph signals \Rightarrow Associate a value to each node $x : \mathcal{V} \to \mathbb{R}$
- Matrix representation \Rightarrow Adjacency matrix **A**, Laplacian matrix **L**

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

▶ Discrete-time signal \Rightarrow Relation of nearby values carries information

- \Rightarrow Make the data structure explicit \Rightarrow Nearby elements are related
- \Rightarrow Two constitutive elements of SP: data structure and signal values
- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \Rightarrow \mathcal{V}$: set of nodes, \mathcal{E} : set of edges
- Graph signals \Rightarrow Associate a value to each node $x : \mathcal{V} \to \mathbb{R}$
- $\blacktriangleright \text{ Matrix representation} \Rightarrow \text{Adjacency matrix } \mathbf{A}, \text{ Laplacian matrix } \mathbf{L}$
 - \Rightarrow Fixes ordering of the nodes \Rightarrow Permutations
 - \Rightarrow Generic matrix **S** (support matrix, graph shift operator)

Sandryhaila, Moura, "Discrete Signal Processing on Graphs", IEEE TSP, 2013

Shuman, Narang, Frossard, Ortega, Vandergheynst, "The Emerging Field of Signal Processing on Graphs", IEEE SPM, 2013

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

Graph convolutions

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal

$$\mathbf{x} \ast \mathbf{h} = \sum_{k=0}^{K-1} h_k x_{n-k}$$

▶ Notion of shift $\mathbf{S} \Rightarrow$ Matrix description of graph (adjacency, Laplacian)

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

Graph convolutions

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

 $\blacktriangleright \text{ Notion of shift } \mathbf{S} \implies \text{Matrix description of graph } \Rightarrow \mathbf{Sx \ shifts \ the \ signal \ x}$

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

Graph convolutions

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift $\mathbf{S} \Rightarrow$ Matrix description of graph $\Rightarrow \mathbf{Sx}$ shifts the signal \mathbf{x}

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

🗞 RICE 🙆 📴

Graph convolutions

• Graph convolution \Rightarrow Linear combination of shifted versions of the signal

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} = \mathbf{H}(\mathbf{S}) \mathbf{x}$$

- ▶ Notion of shift $\mathbf{S} \Rightarrow$ Matrix description of graph (adjacency, Laplacian)
- ▶ Linear combination of neighboring signal \Rightarrow Local operation

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

Nonlinear graph signal processing

Traditional signal processing

 \Rightarrow Best linear filter that exploits structure

 $\min_{\{h_k\}} \mathsf{J}(\mathbf{z}_1) = \min_{\{h_k\}} \mathsf{J}(\mathbf{H}(\mathbf{S})\mathbf{x})$

Linear models \Rightarrow Limited representation \Rightarrow Nonlinear graph signal processing

Gama, Isufi, Leus, Ribeiro, "Graphs, Convolutions and Neural Networks: From Graph Filters to Graph Neural Networks", IEEE SPM, 2020

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

Nonlinear graph signal processing

Traditional signal processing

 \Rightarrow Best linear filter that exploits structure

 $\min_{\{h_k\}} \mathsf{J}(\mathbf{z}_1) = \min_{\{h_k\}} \mathsf{J}(\mathbf{H}(\mathbf{S})\mathbf{x})$

Linear models \Rightarrow Limited representation \Rightarrow Nonlinear graph signal processing

Graph perceptron \Rightarrow Nonlinear processing \Rightarrow Graph filter \Rightarrow Pointwise nonlinearity \Rightarrow Learn graph filter $\{h_k\} \Rightarrow \min_{I_{h_1}} J(\mathbf{x}_1)$

- Basic nonlinear description of models
- \Rightarrow Increase representation power \Rightarrow Repeat

Gama, Isufi, Leus, Ribeiro, "Graphs, Convolutions and Neural Networks: From Graph Filters to Graph Neural Networks", IEEE SPM, 2020

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

Graph convolutional networks

Cascade of L layers

- \Rightarrow Graph convolutions with filters $\mathcal{H} = \{\mathbf{h}_{\ell}\}$
- \Rightarrow Pointwise nonlinearity (activation functions)
- The GCNN $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ depends on the filters $\mathcal H$
- \Rightarrow Learn filter taps $\mathcal H$ from training data
- \Rightarrow Also depends on the graph ${\bf S}$
- Nonlinear mapping $\Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$
- \Rightarrow Exploit underlying graph structure ${\bf S}$
- \Rightarrow Local information
- \Rightarrow Distributed implementation

Credit: Ruiz et al., "Graph Neural Networks: Architectures, Stability, and Transferability", Proc. IEEE, 2021

S. Segarra, A. Swami, Z. Zhao

From GCNs to Message Passing Networks

Every layer aggregates (one-hop) information and we stack several layers to increase the size of the "local" neighborhood influencing every node's output

Graph Convolutional Network (GCN)

From GCNs to Message Passing Networks

• Every layer aggregates (one-hop) information and we stack several layers to increase the size of the "local" neighborhood influencing every node's output

Message-passing Neural Network (MPNN)

A Zoo of GNNs has been developed

Credit: "Graph neural networks: A review of methods and applications"
Typical generic problems tackled with GNNs

Node classification

Link prediction

Graph classification

Graph-based ML for Wireless Comms.

Translate into Domain-Specific Problems

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 18 / 116

Graphs in Wireless Communications

► Built-in scalability

 \Rightarrow We can train and test with different sizes of systems

► Built-in scalability

 \Rightarrow We can train and test with different sizes of systems

► Facilitate distributed implementation

 \Rightarrow Forward-pass implementation based on local computations

► Built-in scalability

- \Rightarrow We can train and test with different sizes of systems
- ► Facilitate distributed implementation
 - \Rightarrow Forward-pass implementation based on local computations
- ▶ Locality plays a central role
 - \Rightarrow My optimal decision depends on the parts of the network close to me

► Built-in scalability

 \Rightarrow We can train and test with different sizes of systems

► Facilitate distributed implementation

 \Rightarrow Forward-pass implementation based on local computations

▶ Locality plays a central role

 \Rightarrow My optimal decision depends on the parts of the network close to me

► Exploit the correct symmetries

 \Rightarrow Permutation equivariance/invariance is a natural feature of network control

CNNs and translation invariance

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 21 / 116

CNNs and translation invariance

Oracle

Cat

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 21 / 116

CNNs and translation invariance

Architectures used for object recognition benefit from translation invariance
 ⇒ Convolutional Neural Networks

▶ Learning in the class of function to which the oracle belongs

GNNs and permutation equivariance

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 22 / 116

GNNs and permutation equivariance

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 22 / 116

GNNs and permutation equivariance

Architectures used for power allocation benefit from permutation equivariance
 ⇒ Graph Neural Networks

▶ Learning in the class of function to which the oracle belongs

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 22 / 116

Permutation equivariance vs. invariance

- Equivariance $\Rightarrow f_{\theta}(\Pi \mathbf{X}; \Pi \mathbf{A} \Pi^{\top}) = \Pi f_{\theta}(\mathbf{X}; \mathbf{A})$
- Invariance $\Rightarrow f_{\theta}(\mathbf{\Pi}\mathbf{X};\mathbf{\Pi}\mathbf{A}\mathbf{\Pi}^{\top}) = f_{\theta}(\mathbf{X};\mathbf{A})$

Permutation equivariance vs. invariance

• Equivariance $\Rightarrow f_{\theta}(\Pi \mathbf{X}; \Pi \mathbf{A} \Pi^{\top}) = \Pi f_{\theta}(\mathbf{X}; \mathbf{A})$

• Invariance
$$\Rightarrow f_{\theta}(\mathbf{\Pi}\mathbf{X};\mathbf{\Pi}\mathbf{A}\mathbf{\Pi}^{\top}) = f_{\theta}(\mathbf{X};\mathbf{A})$$

- ▶ GNNs are equivariant at the level of the nodes (or edges) and invariant at the level of the graph
 - \Rightarrow Node labels permute when the input is permuted
 - \Rightarrow Graph labels are impervious to permutations
- ▶ Achievable rates (node-level quantity) are re-indexed with permutations
 - \Rightarrow but the total sum-rate (graph-level quantity) is not modified

Model-inspired Data-driven Solutions

Credit: "Wireless Networks Design in the Era of Deep Learning: Model-Based, Al-Based, or Both?" Zappone et al., IEEE ToC, 2019

Synergy between classical models and modern data-driven solutions

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

▶ Very dynamic field \Rightarrow Many new papers being published

Papers "GNN" + "Wireless Network"

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

- ▶ Very dynamic field \Rightarrow Many new papers being published
- ▶ Several tutorials/surveys in the area

 \Rightarrow He et al., "An overview on the application of graph neural networks in wireless networks", IEEE O. J. of the Comm. Soc., 2021

 \Rightarrow Hu et al., "Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications", IEEE Comm. Surv. & Tut., 2021

 \Rightarrow Shen et al., "Graph neural networks for wireless communications: From theory to practice", IEEE Trans. Wireless Comm., 2022

 \Rightarrow Lee et al., "Graph neural networks meet wireless communications: Motivation, applications, and future directions", IEEE Wireless Comm., 2022

- ▶ Very dynamic field \Rightarrow Many new papers being published
- ▶ Several tutorials/surveys in the area

 \Rightarrow Simeone, "A Very Brief Introduction to Machine Learning with Applications to Communication Systems", IEEE Trans. on Cognitive Comm. and Netw., 2018

 \Rightarrow Ahmad et al., "Machine Learning Meets Communication Networks: Current Trends and Future Challenges", IEEE Access, 2020

 \Rightarrow Ali et al., "6G White Paper on Machine Learning in Wireless Communication Networks", Arxiv, 2020

 \Rightarrow Jiang, "Graph-based deep learning for communication networks: A survey", Computer Comm., 2022

 \Rightarrow Suárez-Varela et al., "Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities", IEEE Network, 2023

- ▶ Very dynamic field \Rightarrow Many new papers being published
- ▶ Several tutorials/surveys in the area
- ► A variety of problems have been tackled, including:
 - \Rightarrow Power allocation and beamforming
 - \Rightarrow Channel estimation
 - \Rightarrow Traffic prediction
 - \Rightarrow Spectrum allocation
 - \Rightarrow Cooperative caching
 - \Rightarrow Link scheduling
 - \Rightarrow Routing

Part II: GNNs at the Physical Layer

Power and bandwidth are fundamental resources in communication
 ⇒ Key to determine the effective capacity of a wireless network

- Power and bandwidth are fundamental resources in communication
 ⇒ Key to determine the effective capacity of a wireless network
- Randomly varying channel and user demand
 ⇒ Optimal resource (re-)allocation essential for smooth functioning
- ▶ Algorithms must be robust against perturbations in the network

- Power and bandwidth are fundamental resources in communication
 ⇒ Key to determine the effective capacity of a wireless network
- Randomly varying channel and user demand
 ⇒ Optimal resource (re-)allocation essential for smooth functioning
- ► Algorithms must be robust against perturbations in the network
- ▶ We consider the optimal power allocation problem
 - \Rightarrow Fast, efficient, and robust solution

Overview

► Broad objective

- \Rightarrow Interference management in tactical wireless ad hoc networks
- \Rightarrow Network utility optimization under constraints

Overview

Broad objective

- \Rightarrow Interference management in tactical wireless ad hoc networks
- \Rightarrow Network utility optimization under constraints
- ▶ Domain-inspired learning and reusable models
 - \Rightarrow Combine classical algorithms with data-driven modules
 - \Rightarrow Domain knowledge with neural acceleration

Overview

Broad objective

- \Rightarrow Interference management in tactical wireless ad hoc networks
- \Rightarrow Network utility optimization under constraints

▶ Domain-inspired learning and reusable models

- \Rightarrow Combine classical algorithms with data-driven modules
- \Rightarrow Domain knowledge with neural acceleration

► Learning under constraints

- \Rightarrow Near-optimal solution for the unconstrained problem
- \Rightarrow Flexibility of learning to operate under multiple constraints
- ► Intelligent system leverages graph structure to allocate power
 - \Rightarrow Requires centralized training but deployment can be distributed

Optimal Power Allocation - SISO Case

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 29 / 116

System Model

- \blacktriangleright Ad hoc network with m transmitter-receiver pairs
- ▶ Transmitter *i* has an associated receiver r(i) for all $i \in \{1, m\}$

System Model

- \blacktriangleright Ad hoc network with m transmitter-receiver pairs
- ▶ Transmitter *i* has an associated receiver r(i) for all $i \in \{1, m\}$
- ▶ Channel State Information (CSI) matrix $\mathbf{H}(t) \in \mathbb{R}^{m \times m}$
 - \Rightarrow Encodes (time-varying) channel characteristics
 - $\Rightarrow H_{ji}(t)$ represents the channel from Tx i to Rx r(j) at time t

$$H_{ji}(t) = H_{ji}^P H_{ji}^F(t)$$

 \Rightarrow where $H_{ji}^P \propto \operatorname{dist}(i, r(j))^{-k}$ and $H_{ji}^F(t) \sim \operatorname{Rayleigh}(\alpha)$

System Model

- \blacktriangleright Ad hoc network with m transmitter-receiver pairs
- ▶ Transmitter *i* has an associated receiver r(i) for all $i \in \{1, m\}$
- ▶ Channel State Information (CSI) matrix $\mathbf{H}(t) \in \mathbb{R}^{m \times m}$
 - \Rightarrow Encodes (time-varying) channel characteristics
 - $\Rightarrow H_{ji}(t)$ represents the channel from Tx i to Rx r(j) at time t

$$H_{ji}(t) = H_{ji}^P H_{ji}^F(t)$$

 \Rightarrow where $H^P_{ji} \propto \operatorname{dist}(i,r(j))^{-k}$ and $H^F_{ji}(t) \sim \operatorname{Rayleigh}(\alpha)$

Node State Information (NSI) matrix X(t) ∈ ℝ^{m×d}
 ⇒ Encodes (time-varying) node features of the Tx-Rx pair
 ⇒ # of packets that arrived, queue length, user priority

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

Given the CSI matrix $\mathbf{H}(t)$, the NSI matrix $\mathbf{X}(t)$, and a network utility function $u(\mathbf{H}(t), \mathbf{X}(t), \mathbf{p}(t))$, determine the optimal power allocation $\mathbf{p}(t) \in \mathbb{R}^m_+$

Given the CSI matrix $\mathbf{H}(t)$, the NSI matrix $\mathbf{X}(t)$, and a network utility function $u(\mathbf{H}(t), \mathbf{X}(t), \mathbf{p}(t))$, determine the optimal power allocation $\mathbf{p}(t) \in \mathbb{R}^m_+$

- ▶ Power constraint; Maximum power at each node $\Rightarrow p_i \leq p_{\text{max}}$
- ▶ Network utility function: sum rate across nodes

Given the CSI matrix $\mathbf{H}(t)$, the NSI matrix $\mathbf{X}(t)$, and a network utility function $u(\mathbf{H}(t), \mathbf{X}(t), \mathbf{p}(t))$, determine the optimal power allocation $\mathbf{p}(t) \in \mathbb{R}^m_+$

- ▶ Power constraint; Maximum power at each node $\Rightarrow p_i \leq p_{\text{max}}$
- ▶ Network utility function: sum rate across nodes
- ▶ Data rate at receiver *i* is given by (for noise variance σ^2)

$$c_i = \log_2\left(1 + \frac{|H_{ii}|^2 p_i}{\sigma^2 + \sum_{j \neq i} |H_{ij}|^2 p_j}\right)$$

► Maximize weighted sum-rate $\sum_{i=1}^{m} \alpha_i c_i$, under power constraint

• Seeking a function $\mathbf{p}(\mathbf{H}, \mathbf{X})$ to optimize WSR

S. Segarra, A. Swami, Z. Zhao

Classical Approach

- ▶ Weighted minimum mean-square error (WMMSE) [Shi *et al.*, TSP 2011]
 - \Rightarrow Reformulate the optimization problem
 - \Rightarrow Implement block coordinate descent
 - \Rightarrow Leads to closed-form iteration formulas

$$\min_{\mathbf{w},\mathbf{u},\mathbf{v}} \sum_{i=1}^{m} (w_i e_i(\mathbf{H},\mathbf{u},\mathbf{v}) - \log w_i)$$

Classical Approach

- ▶ Weighted minimum mean-square error (WMMSE) [Shi *et al.*, TSP 2011]
 - \Rightarrow Reformulate the optimization problem
 - \Rightarrow Implement block coordinate descent
 - \Rightarrow Leads to closed-form iteration formulas

$$\min_{\mathbf{w},\mathbf{u},\mathbf{v}} \sum_{i=1}^{m} (w_i e_i(\mathbf{H}, \mathbf{u}, \mathbf{v}) - \log w_i)$$

- ▶ The optimal power p_i can be found as v_i^2
- ▶ WMMSE is an iterative approach to solve the optimization
 ⇒ Update u, w, and v at each step by block coordinate descent
 ⇒ Stop when change between consecutive steps is small enough

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.
WMMSE: Update Equations

S. Segarra, A. Swami, Z. Zhao

😽 RICE 🔕 🙋

WMMSE: Update Equations

- 1. Initialize $v_i = p_{\max}$ 2. repeat (for all i) $w'_i = w_i$ 3. $u_i = rac{H_{ii}v_i}{\sigma^2 + \sum_i H_{ii}^2 v_i^2}$ 4. 5. $w_i = \frac{1}{1 - u_i H_{ii} v_i}$ $v_i = \frac{\alpha_i u_i H_{ii} w_i}{\mu + \sum_i \alpha_i H^2 u^2 w_i}$ 6. 7. until $\sum_{j} \log w_j - \sum_{j} \log w'_j < \epsilon$ 8. $p_i = v_i^2$
- ▶ May not always converge to the global optimum
- ► Computationally expensive with high time complexity
- Cannot incorporate node state info
- ▶ Must be rerun for each instance of **H**

S. Segarra, A. Swami, Z. Zhao

Connectionist Approach

- \blacktriangleright Use neural networks to learn the optimal power allocation $\mathbf{p}(\mathbf{H},\mathbf{X})$
- ▶ GNNs are good candidates to model this allocation
 - \Rightarrow CSI H as a weighted adjacency matrix of a directed graph
 - \Rightarrow NSI ${\bf X}$ as a signal supported at the nodes

😽 RICE 🔕 🙋

Connectionist Approach

- \blacktriangleright Use neural networks to learn the optimal power allocation $\mathbf{p}(\mathbf{H},\mathbf{X})$
- ▶ GNNs are good candidates to model this allocation
 - \Rightarrow CSI H as a weighted adjacency matrix of a directed graph
 - \Rightarrow NSI ${\bf X}$ as a signal supported at the nodes
- ▶ $\mathbf{p}(\mathbf{H}, \mathbf{X}) = \Psi(\mathbf{H}, \mathbf{X}; \mathbf{\Theta})$, where Ψ is a K-layered GNN
 - $\Rightarrow \Theta$ is the set of trainable weights

Connectionist Approach

- \blacktriangleright Use neural networks to learn the optimal power allocation $\mathbf{p}(\mathbf{H}, \mathbf{X})$
- ▶ GNNs are good candidates to model this allocation
 - \Rightarrow CSI H as a weighted adjacency matrix of a directed graph
 - \Rightarrow NSI ${\bf X}$ as a signal supported at the nodes
- ▶ $\mathbf{p}(\mathbf{H}, \mathbf{X}) = \Psi(\mathbf{H}, \mathbf{X}; \mathbf{\Theta})$, where Ψ is a *K*-layered GNN
 - $\Rightarrow \Theta$ is the set of trainable weights
- Supervised Training: Learn by using WMMSE output as training signals
- ▶ Unsupervised Training: Learn using Sum-rate as the optimization objective

REGNN

▶ Standard layered GNN architecture

$$\mathbf{z}_{l} = \operatorname{ReLU}\left(\sum_{f=0}^{F_{l}} \gamma_{lf} \mathbf{H}^{f} \mathbf{z}_{l-1}\right) \quad \mathbf{z}_{0} = \mathbf{X}, \ \Phi(\mathbf{H}, \mathbf{X}; \boldsymbol{\gamma}) = \mathbf{z}_{L}$$

REGNN

▶ Standard layered GNN architecture

$$\mathbf{z}_{l} = \operatorname{ReLU}\left(\sum_{f=0}^{F_{l}} \gamma_{lf} \mathbf{H}^{f} \mathbf{z}_{l-1}\right) \quad \mathbf{z}_{0} = \mathbf{X}, \ \Phi(\mathbf{H}, \mathbf{X}; \boldsymbol{\gamma}) = \mathbf{z}_{L}$$

▶ Graph filter $\sum_{f=0}^{F_l} \gamma_{lf} \mathbf{H}^f$ combines data within F_l -hop neighborhoods

- ▶ Alternate local linear aggregation of data with pointwise non-linearity
- ▶ Learn the best weights in the local aggregation of data

REGNN

▶ Standard layered GNN architecture

$$\mathbf{z}_{l} = \operatorname{ReLU}\left(\sum_{f=0}^{F_{l}} \gamma_{lf} \mathbf{H}^{f} \mathbf{z}_{l-1}\right) \quad \mathbf{z}_{0} = \mathbf{X}, \ \Phi(\mathbf{H}, \mathbf{X}; \boldsymbol{\gamma}) = \mathbf{z}_{L}$$

▶ Graph filter ∑^{F_l}_{f=0} γ_{lf} H^f combines data within F_l-hop neighborhoods
 ▶ Alternate local linear aggregation of data with pointwise non-linearity

▶ Learn the best weights in the local aggregation of data

Eisen-Ribeiro TSP'20

▶ Compute pairwise influence (interference) of each neighbor

$$\gamma_{ji}^{k} = MLP1(H_{ji}, H_{ij}, x_j, H_{jj}, \beta_j^{k-1}) \qquad \forall i, j \in \mathbb{N}i$$

▶ Compute pairwise influence (interference) of each neighbor

$$\gamma_{ji}^{k} = MLP1(H_{ji}, H_{ij}, x_j, H_{jj}, \beta_j^{k-1}) \qquad \forall i, j \in \mathbb{N}i$$

► Local non-linear aggregation of neighborhood interference

$$\alpha_i^k = CONCAT(MAX_j(\gamma_{ji}), \sum_j \gamma_{ji}) \qquad \forall i, j \in \mathbb{N}i$$

▶ Compute pairwise influence (interference) of each neighbor

$$\gamma_{ji}^{k} = MLP1(H_{ji}, H_{ij}, x_j, H_{jj}, \beta_j^{k-1}) \qquad \forall i, j \in \mathbb{N}i$$

► Local non-linear aggregation of neighborhood interference

$$\alpha_i^k = CONCAT(MAX_j(\gamma_{ji}), \sum_j \gamma_{ji}) \qquad \forall i, j \in \mathbb{N}i$$

▶ Learn policy based on combination of channel with interference

$$\beta_i^k = MLP2(\alpha_i^k, H_{ii}, \beta_i^{k-1}, x_i) \qquad \forall i$$

S. Segarra, A. Swami, Z. Zhao

▶ Compute pairwise influence (interference) of each neighbor

$$\gamma_{ji}^{k} = MLP1(H_{ji}, H_{ij}, x_j, H_{jj}, \beta_j^{k-1}) \qquad \forall i, j \in \mathbb{N}i$$

▶ Local non-linear aggregation of neighborhood interference

$$\alpha_i^k = CONCAT(MAX_j(\gamma_{ji}), \sum_j \gamma_{ji}) \qquad \forall i, j \in \mathbb{N}i$$

▶ Learn policy based on combination of channel with interference

May 5th, 2024 36 / 116

Graph-based Unfolding Scheme

▶ Iterative algorithm

- \Rightarrow Near-optimal
- \Rightarrow Time-consuming
- \Rightarrow Greedy
- Learnable models
 - \Rightarrow **MLP** ignores graph structure
 - \Rightarrow **GNN** ignores domain info.

Hybrid model

- \Rightarrow Iterations as layers
- \Rightarrow Embedded graph model
- \Rightarrow Inherits greediness

- ▶ Iterative algorithms are long cascades of iterative steps
 - \Rightarrow Good performance but slow and/or expensive
- ▶ Each step computes variables of interest from a set of parameters

- ▶ Iterative algorithms are long cascades of iterative steps
 - \Rightarrow Good performance but slow and/or expensive
- ▶ Each step computes variables of interest from a set of parameters
- ▶ Limit number of iterations \Rightarrow suboptimal performance
- ▶ Need more efficient parameter update for faster convergence

- ▶ Iterative algorithms are long cascades of iterative steps
 - \Rightarrow Good performance but slow and/or expensive
- ▶ Each step computes variables of interest from a set of parameters
- ▶ Limit number of iterations \Rightarrow suboptimal performance
- ▶ Need more efficient parameter update for faster convergence
- ▶ Algorithm Unrolling learn from data Monga, Li & Eldar, 2019 arxiv, 2021 IEEE SPM)
 ⇒ Supervised/Un-supervised gradient feedback
 - ▶ Iterations \Rightarrow layers, Parameters \Rightarrow neural networks

- ▶ Iterative algorithms are long cascades of iterative steps
 - \Rightarrow Good performance but slow and/or expensive
- ▶ Each step computes variables of interest from a set of parameters
- ▶ Limit number of iterations \Rightarrow suboptimal performance
- ▶ Need more efficient parameter update for faster convergence
- Algorithm Unrolling learn from data
 Monga, Li & Eldar, 2019 arxiv, 2021 IEEE SPM)
 Supervised/Un-supervised gradient feedback
 - ▶ Iterations \Rightarrow layers, Parameters \Rightarrow neural networks
 - ▶ More interpretable operations, easy to follow update trajectory
 - Once trained, can be used off-the-shelf \Rightarrow Effective for online solutions

S. Segarra, A. Swami, Z. Zhao

Proposed Method

 \blacktriangleright UWMMSE update rules at arbitrary layer k

$$\boldsymbol{a}^{(k)} = \Psi(\mathbf{H}; \boldsymbol{\theta}_a^{(k)}), \qquad \boldsymbol{b}^{(k)} = \Psi(\mathbf{H}; \boldsymbol{\theta}_b^{(k)})$$
(1)

$$u_i^{(k)} = \frac{h_{ii}v_i^{(k-1)}}{\sigma^2 + \sum h_i^2 v_i^{(k-1)}v_i^{(k-1)}}, \qquad \forall i \qquad (2)$$

$$b + \sum_{j} n_{ij} b_j \quad b_j$$

$$w_i^{(k)} = \frac{a_i^{(k)}}{1 - u_i^{(k)} h_{i:i} v_i^{(k-1)}} + b_i^{(k)}, \qquad \forall i \qquad (3)$$

$$v_i^{(k)} = \alpha \left(\frac{u_i^{(k)} h_{ii} w_i^{(k)}}{\sum_j h_{ji}^2 u_j^{(k)} u_j^{(k)} w_j^{(k)}} \right), \qquad \forall i \qquad (4)$$

- \triangleright **v** and **u** as transmitter and receiver variables
- \blacktriangleright w as a tunable parameter
- ▶ a = 1, b = 0 yields classical solution

S. Segarra, A. Swami, Z. Zhao

Block Diagram

 \blacktriangleright k^{th} layer of the model is shown below

Simulation Results - 1

- ▶ Random geometric graph with M node pairs
- ▶ Path loss and Rayleigh fading
- Performance Comparison

 \Rightarrow Network size M = 20;

$$\Rightarrow K = 4, K_{\text{max}} = 100$$

▶ Time Comparison

Algorithm	Training	Test	Test
	time (m)	sum-rate	time (ms)
WMMSE	-	82.94	16
Tr-WMMSE	-	76.49	1.0
MLP	0.5	78.17	3.2
REGNN	15	57.92	2.5
IGCNet	5	55.30	3
UWMMSE	15	83.21	2.0

WMMSE: Shi et al, TSP'11, MLP: Sun et al. TSP'18, REGNN: Eisen-Ribeiro TSP'20, IGCNet: Shen et al. Globecom'21, UWMMSE: Chowdhury et al, ICASSP'21, TWC'21

S. Segarra, A. Swami, Z. Zhao

Simulation Results - 2

- Simulating dynamic network topologies
 - \Rightarrow Nodes in motion
 - \Rightarrow Insertion / Deletion of nodes
- Variation in Spatial Density

▶ Variation in Network Size

Chowdhury et al., ICASSP'21, TWC'21

S. Segarra, A. Swami, Z. Zhao

Optimal Power Allocation & Beamforming - MIMO Case

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 43 / 116

System Model

- \blacktriangleright Ad hoc network with *M* transmitter-receiver pairs (nodes)
- \blacktriangleright Transmitters have T antennas, receivers have R antennas
- ▶ Transmitter *i* has an associated receiver $r(i) \forall i \in \{1, M\}$

System Model

- Ad hoc network with M transmitter-receiver pairs (nodes)
- \blacktriangleright Transmitters have T antennas, receivers have R antennas
- ▶ Transmitter *i* has an associated receiver $r(i) \forall i \in \{1, M\}$
- ▶ Channel State Information (CSI) tensor $\mathcal{H} \in \mathbb{R}^{M \times M \times R \times T}$
 - \Rightarrow Encodes channel characteristics
 - $\Rightarrow [\mathcal{H}]_{ji::} = \mathbf{H}_{ji} \in \mathbb{R}^{R \times T}$ represents a MIMO channel from *i* to r(j)
 - \Rightarrow Channel between Tx-antenna k and Rx-antenna l is given by

$$[\mathbf{H}_{ji}]_{lk} = H_{jilk} = H_{jilk}^P H_{jilk}^F(t)$$

 $\Rightarrow \text{ where } H^P_{jilk} \propto \operatorname{dist}(i,r(j))^{-k} \text{ for all } l,k \text{ and } H^F_{jilk} \sim \operatorname{Rayleigh}(\alpha)$

S. Segarra, A. Swami, Z. Zhao

System Model

- Ad hoc network with M transmitter-receiver pairs (nodes)
- \blacktriangleright Transmitters have T antennas, receivers have R antennas
- ▶ Transmitter *i* has an associated receiver $r(i) \forall i \in \{1, M\}$
- ▶ Channel State Information (CSI) tensor $\mathcal{H} \in \mathbb{R}^{M \times M \times R \times T}$
 - \Rightarrow Encodes channel characteristics
 - $\Rightarrow [\mathcal{H}]_{ji::} = \mathbf{H}_{ji} \in \mathbb{R}^{R \times T}$ represents a MIMO channel from *i* to r(j)
 - \Rightarrow Channel between Tx-antenna k and Rx-antenna l is given by

$$[\mathbf{H}_{ji}]_{lk} = H_{jilk} = H_{jilk}^P H_{jilk}^F(t)$$

 $\Rightarrow \text{ where } H^P_{jilk} \propto \operatorname{dist}(i,r(j))^{-k} \text{ for all } l,k \text{ and } H^F_{jilk} \sim \operatorname{Rayleigh}(\alpha)$

• Transmitter beamformer tensor $\mathcal{V} \in \mathbb{R}^{M \times T \times d}$ $\Rightarrow [\mathcal{V}]_i = \mathbf{V}_i \in \mathbb{R}^{T \times d}$ transmits signal $\mathbf{s}_i \in \mathbb{R}^d$ at node i

S. Segarra, A. Swami, Z. Zhao

Given the CSI tensor \mathcal{H} , and a network utility function $u(\mathcal{H}, \mathcal{V}, \mathbf{p})$, determine the optimal power allocation \mathbf{p} and \mathcal{V}

Given the CSI tensor \mathcal{H} , and a network utility function $u(\mathcal{H}, \mathcal{V}, \mathbf{p})$, determine the optimal power allocation \mathbf{p} and \mathcal{V}

- ▶ Power Constraint: Maximum power at each node $\Rightarrow p_i \leq P_{\text{max}}$
- ▶ Network utility: sum rate across nodes

Given the CSI tensor \mathcal{H} , and a network utility function $u(\mathcal{H}, \mathcal{V}, \mathbf{p})$, determine the optimal power allocation \mathbf{p} and \mathcal{V}

- ▶ Power Constraint: Maximum power at each node $\Rightarrow p_i \leq P_{\max}$
- ▶ Network utility: sum rate across nodes
- **Data rate** at receiver *i* is given by (for noise variance σ^2)

$$c_{i}(\mathcal{H}, \mathcal{V}) = \log_{2} \det \left(\mathbf{I} + \mathbf{H}_{ii} \mathbf{V}_{i} \mathbf{V}_{i}^{\top} \mathbf{H}_{ii}^{\top} \left(\sigma^{2} \mathbf{I} + \sum_{j \neq i} \mathbf{H}_{ij} \mathbf{V}_{j} \mathbf{V}_{j}^{\top} \mathbf{H}_{ij}^{\top} \right)^{-1} \right)$$

where $\operatorname{Tr} \left(\mathbf{V}_{i} \mathbf{V}_{i}^{\top} \right) \leq p_{i}$
Maximize weighted sum-rate $\sum_{i=1}^{M} \alpha_{i} c_{i}$

► Seeking a function $\Psi(\mathcal{H})$

S. Segarra, A. Swami, Z. Zhao

Classical Approach

- ▶ Weighted minimum mean-square error (WMMSE)
 - \Rightarrow Reformulate the optimization problem [Shi et al., TSP 2011]
 - \Rightarrow Implement block coordinate descent
 - \Rightarrow Leads to closed-form iteration formulae

$$\min_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}},\boldsymbol{\mathcal{V}}}\sum_{i=1}^{M}(\mathrm{Tr}(\mathbf{W}_{i}\mathbf{E}_{i})-\log\det\mathbf{W}_{i})$$

- ▶ $\mathcal{U} \in \mathbb{R}^{M \times R \times d}$ is the receiver beamformer tensor
- $\blacktriangleright \ \mathcal{W} \in \mathbb{R}^{M \times d \times d} \text{ is the node weight tensor}$

Classical Approach

- ▶ Weighted minimum mean-square error (WMMSE)
 - \Rightarrow Reformulate the optimization problem [Shi $et~al.,\,\mathrm{TSP}$ 2011]
 - \Rightarrow Implement block coordinate descent
 - \Rightarrow Leads to closed-form iteration formulae

$$\min_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}},\boldsymbol{\mathcal{V}}}\sum_{i=1}^{M}(\mathrm{Tr}(\mathbf{W}_{i}\mathbf{E}_{i})-\log\det\mathbf{W}_{i})$$

- ▶ $\mathcal{U} \in \mathbb{R}^{M \times R \times d}$ is the receiver beamformer tensor
- $\mathcal{W} \in \mathbb{R}^{M \times d \times d}$ is the node weight tensor
- ▶ WMMSE is an iterative approach to solve the optimization
 - \Rightarrow Update \mathcal{U}, \mathcal{W} , and \mathcal{V} at each step by block coordinate descent
 - \Rightarrow Stop if change between consecutive steps is small enough

S. Segarra, A. Swami, Z. Zhao

Graph-based and model-informed ML solution

- ▶ Use neural networks to learn the optimal power allocation $\mathbf{p}(\mathcal{H})$
- ▶ Graph neural networks are good candidates to model this allocation
 - $\Rightarrow \mathbf{p}(\mathcal{H}) = \Psi(\mathcal{H}; \mathbf{\Theta}), \text{ where } \Psi \text{ is an } K\text{-layered } \mathbf{GNN}$
 - $\Rightarrow \Theta$ is the set of trainable weights

Graph-based and model-informed ML solution

- ▶ Use neural networks to learn the optimal power allocation $\mathbf{p}(\mathcal{H})$
- ▶ Graph neural networks are good candidates to model this allocation
 - $\Rightarrow \mathbf{p}(\mathcal{H}) = \Psi(\mathcal{H}; \mathbf{\Theta}), \text{ where } \Psi \text{ is an } K\text{-layered } \mathbf{GNN}$
 - $\Rightarrow \Theta$ is the set of trainable weights
- Built-in scalability
 - \Rightarrow We can train and test with different sizes of systems
- Exploit the right symmetries
 - \Rightarrow Permutation equivariance is a natural feature for power allocation

Graph-based and model-informed ML solution

- 🗞 RICE 🙆 📴
- ▶ Use neural networks to learn the optimal power allocation $\mathbf{p}(\mathcal{H})$
- ▶ Graph neural networks are good candidates to model this allocation
 - $\Rightarrow \mathbf{p}(\mathcal{H}) = \Psi(\mathcal{H}; \mathbf{\Theta}), \text{ where } \Psi \text{ is an } K\text{-layered GNN}$
 - $\Rightarrow \Theta$ is the set of trainable weights
- Built-in scalability
 - \Rightarrow We can train and test with different sizes of systems
- ► Exploit the right symmetries
 - \Rightarrow **Permutation equivariance** is a natural feature for power allocation
- ▶ Model-informed solution via algorithm unfolding
- ▶ Layers in a neural architecture inspired by iterations of WMMSE
 - \Rightarrow More interpretable operations
 - \Rightarrow Easy to fall back into classical solution

Proposed Method

 \blacktriangleright UWMMSE update rules at arbitrary layer k

$$\mathbf{a}^{(k)} = \Psi(\bar{\mathcal{H}}; \theta_a), \quad \mathbf{b}^{(k)} = \Psi(\bar{\mathcal{H}}; \theta_b), \tag{2}$$

$$\mathbf{U}_{i}^{(k)} = \left(\sum_{j \neq i} \mathbf{H}_{ij} \mathbf{V}_{j}^{(k-1)} \mathbf{V}_{j}^{(k-1)\top} \mathbf{H}_{ij}^{\top} + \sigma^{2} \mathbf{I}\right)^{-1} \mathbf{H}_{ii} \mathbf{V}_{i}^{(k-1)} \qquad \forall i \qquad (3)$$

$$\mathbf{W}_{i}^{(k)} = [\mathbf{a}^{(k)}]_{i} \left(\mathbf{I} - \mathbf{U}_{i}^{(k)\top} \mathbf{H}_{ii} \mathbf{V}_{j}^{(k-1)} \right)^{-1} + [\mathbf{b}^{(k)}]_{i} \qquad \forall i \qquad (4)$$

$$\mathbf{V}_{i}^{(k)} = \beta \left(\left(\sum_{j \neq i} \mathbf{H}_{ij}^{\top} \mathbf{U}_{j}^{(k)} \mathbf{W}_{j}^{(k)} \mathbf{U}_{j}^{(k)\top} \mathbf{H}_{ij} \right)^{-1} \mathbf{H}_{ii}^{\top} \mathbf{U}_{i}^{(k)} \mathbf{W}_{i}^{(k)} \right) \qquad \forall i \qquad (5)$$

S. Segarra, A. Swami, Z. Zhao

Proposed Method

 \blacktriangleright UWMMSE update rules at arbitrary layer k

$$\mathbf{a}^{(k)} = \Psi(\bar{\mathcal{H}}; \theta_a), \quad \mathbf{b}^{(k)} = \Psi(\bar{\mathcal{H}}; \theta_b), \tag{2}$$

$$\mathbf{U}_{i}^{(k)} = \left(\sum_{j \neq i} \mathbf{H}_{ij} \mathbf{V}_{j}^{(k-1)} \mathbf{V}_{j}^{(k-1)\top} \mathbf{H}_{ij}^{\top} + \sigma^{2} \mathbf{I}\right)^{-1} \mathbf{H}_{ii} \mathbf{V}_{i}^{(k-1)} \qquad \forall i \qquad (3)$$

$$\mathbf{W}_{i}^{(k)} = [\mathbf{a}^{(k)}]_{i} \left(\mathbf{I} - \mathbf{U}_{i}^{(k)\top} \mathbf{H}_{ii} \mathbf{V}_{j}^{(k-1)} \right)^{-1} + [\mathbf{b}^{(k)}]_{i} \qquad \forall i \qquad (4)$$

$$\mathbf{V}_{i}^{(k)} = \beta \left(\left(\sum_{j \neq i} \mathbf{H}_{ij}^{\top} \mathbf{U}_{j}^{(k)} \mathbf{W}_{j}^{(k)} \mathbf{U}_{j}^{(k)\top} \mathbf{H}_{ij} \right)^{-1} \mathbf{H}_{ii}^{\top} \mathbf{U}_{i}^{(k)} \mathbf{W}_{i}^{(k)} \right) \qquad \forall i \qquad (5)$$

▶ β is a clipper to enforce power constraint

$$\boldsymbol{\beta}(\mathbf{X}) = \begin{cases} \mathbf{X}, & \text{if } \operatorname{Tr} \left(\mathbf{X} \mathbf{X}^{\top} \right) \leq P_{\max}, \\ \mathbf{X} \cdot \frac{\sqrt{P_{\max}}}{||\mathbf{X}||_{F}}, & \text{otherwise}, \end{cases}$$

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 48 / 116

Tensor Reduction

- GNN Ψ requires CSI between *i* and r(j) to be a scalar
- $\blacktriangleright \ \Phi(\mathcal{H};\omega): \mathbb{R}^{M \times M \times R \times T} \to \mathbb{R}^{M \times M \times 1} \text{ where } \omega \in \mathbb{R}^{RT}$

 \Rightarrow Single-layered 1×1 depth-wise conv with shared weights

 \blacktriangleright Learnable weighted combination of RT coefficients at each node

Block Diagram

 \blacktriangleright k^{th} layer of the model is shown below

▶ Per-layer complexity of UWMMSE is $\mathcal{O}(M^2)$, same as WMMSE

- ▶ Per-layer complexity of UWMMSE is $\mathcal{O}(M^2)$, same as WMMSE
- Linear layer Φ has RT + 1 parameters,

 \Rightarrow Shared filter kernel allows for $\mathcal{O}(M^2)$ reduction

- ▶ Per-layer complexity of UWMMSE is $\mathcal{O}(M^2)$, same as WMMSE
- ▶ Linear layer Φ has RT + 1 parameters,
 - \Rightarrow Shared filter kernel allows for $\mathcal{O}(M^2)$ reduction
- ► Each of the two 2-layered GCNs Ψ , have 6h + 2 trainable weights θ ⇒ h is the size of the hidden layer (typically ≤ 10)

- ▶ Per-layer complexity of UWMMSE is $\mathcal{O}(M^2)$, same as WMMSE
- ▶ Linear layer Φ has RT + 1 parameters,
 - \Rightarrow Shared filter kernel allows for $\mathcal{O}(M^2)$ reduction
- ► Each of the two 2-layered GCNs Ψ , have 6h + 2 trainable weights θ ⇒ h is the size of the hidden layer (typically ≤ 10)
- ▶ Number of trainable weights is therefore 12h + RT + 5
 - \Rightarrow Independent of the number of users M
- ▶ Very few trainable weights
 - \Rightarrow Makes model easy to train
 - \Rightarrow Likely to generalize

Simulation Results - 1

RICE 🚯 📴

- ▶ Random geometric graph with M node pairs
- \blacktriangleright Path loss & fading: Rayeligh, Rician, Network size M=20
- Performance Comparison

▶ Time Comparison

Algorithm	Training	Test
	time (min)	time (sec)
WMMSE	-	1.305
Tr-WMMSE	-	0.047
IAIDNN	~ 10	0.64
GCN-WMMSE	~ 21	1.365
UWMMSE	~ 35	0.054

WMMSE: Shi et al, TSP'11, IAIDNN: Hu et al. TWC'21, GCN-WMMSE: Schynol-Pesavento, JSAC'23,

UWMMSE: Chowdhury et al, MILCOM'21, Asilomar'23, TWC'23

S. Segarra, A. Swami, Z. Zhao

Simulation Results -2

Generalization performance

 \Rightarrow Over SINR.

▶ Performance Comparison

Chowdhury et al, MILCOM'21, TWC'23, Asilomar'23

S. Segarra, A. Swami, Z. Zhao

Optimal Power Allocation - Federated Learning

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 54 / 116

Power allocation for wireless FL

Critical step: upload local updates

How much **transmit power** should local workers use?

Power allocation for wireless FL

Compared to the just-discussed SISO & MISO power allocation cases ...

FL case is more challenging:

- Additional non-convex constraints on FL-specific requirements, e.g., delay and energy
- Ultimate goal of improving FL performance being indirect to the communication objective

Power allocation for wireless FL

Compared to the just-discussed SISO & MISO power allocation cases ...

FL case is more challenging:

- Additional non-convex constraints on FL-specific requirements, e.g., delay and energy
- ⇒ Primal-dual (PD) algorithm enhanced by graph learning
- Ultimate goal of improving FL performance being indirect to the communication objective
- \Rightarrow Local data heterogeneity

Determine the power allocation policy $p^* : \mathbb{R}^{L \times L} \to \mathbb{R}^L$ that solves the following optimization problem¹, subject to bounds on transmission rate, energy efficiency, and power

$$p^{\star} = \operatorname{argmax}_{p} g\left(\mathbb{E}_{\mathbf{H}\sim\mathcal{H}}\left[\operatorname{PSR}(\mathbf{p},\mathbf{H})\right]\right),$$

s.t. $r_{0,i} \leq \mathbb{E}_{\mathbf{H}\sim\mathcal{H}}\left[R_{i}(\mathbf{p},\mathbf{H}) \mid p_{i} > 0\right],$
 $e_{0,i} \leq \mathbb{E}_{\mathbf{H}\sim\mathcal{H}}\left[\frac{R_{i}(\mathbf{p},\mathbf{H})}{p_{i} + P_{\mathrm{c},i}} \mid p_{i} > 0\right], \forall i,$
 $\mathbf{p} = p(\mathbf{H}) \in [0, P_{\mathrm{max}}], \ \forall \mathbf{H},$

¹PSR: Packet success rate, $PSR = \exp(-m/SINR)$

S. Segarra, A. Swami, Z. Zhao

Problem formulation

🗞 RICE 🙆 🙋

Parameterize the power policy with learnable parameters Θ , st $p_{\psi}(\mathbf{H}) = \Psi(\mathbf{H}; \Theta)$, and restate P1 ...

$$p^{\star} = \underset{p}{\operatorname{argmax}} g\left(\mathbb{E}_{\mathbf{H}\sim\mathcal{H}}\left[\operatorname{PSR}(\mathbf{p},\mathbf{H})\right]\right)$$

s.t. $r_{0,i} \leq \mathbb{E}_{\mathbf{H}\sim\mathcal{H}}\left[R_{i}(\mathbf{p},\mathbf{H}) \mid p_{i} > 0\right],$
 $e_{0,i} \leq \mathbb{E}_{\mathbf{H}\sim\mathcal{H}}\left[\frac{R_{i}(\mathbf{p},\mathbf{H})}{p_{i} + P_{c,i}} \mid p_{i} > 0\right], \forall i,$
 $\mathbf{p} = p(\mathbf{H}) \in [0, P_{\max}], \forall \mathbf{H},$

...in a manner that is amenable to a **Primal-Dual (PD) solution**:

$$P_{\psi}^{\star} = \max_{\boldsymbol{\Theta}, \mathbf{y}, \mathbf{r}, \mathbf{e}} g(\mathbf{y}), \qquad (P2)$$

s.t. $\mathbf{y} \leq \mathbb{E}[PSR(\mathbf{p}_{\psi}, \mathbf{H})],$
 $r_i \leq \mathbb{E}[R_i(\mathbf{p}_{\psi}, \mathbf{H}) | p_{\psi_i} > 0],$
 $e_i \leq \mathbb{E}\left[\frac{R_i(\mathbf{p}_{\psi}, \mathbf{H})}{p_{\psi_i} + P_c} | p_{\psi_i} > 0\right],$
 $r_i \in [r_{0,i}, +\infty),$
 $e_i \in [e_{0,i}, +\infty), \forall i,$
 $\mathbf{p}_{\psi} = p_{\psi}(\mathbf{H}) \in [0, P_{\max}], \forall \mathbf{H}.$

S. Segarra, A. Swami, Z. Zhao

PD learning

▶ (P1) has a zero duality gap.

• (P2)'s duality gap depends on the **expressiveness of** Ψ .

The Lagrangian of (P2)

 $\mathcal{L}_{\psi}(\boldsymbol{\Theta}, \mathbf{y}, \mathbf{r}, \mathbf{e}, \boldsymbol{\lambda}_{y}, \boldsymbol{\lambda}_{r}, \boldsymbol{\lambda}_{e}) = g(\mathbf{y}) + \boldsymbol{\lambda}_{y}^{\top}(\mathbb{E}[f_{y}] - \mathbf{y}) + \boldsymbol{\lambda}_{r}^{\top}(\mathbb{E}_{c}[f_{r}] - \mathbf{r}) + \boldsymbol{\lambda}_{e}^{\top}(\mathbb{E}_{c}[f_{e}] - \mathbf{e})$

motivates iterative gradient updates to:

- 1. Learnable parameters $\boldsymbol{\Theta}$;
- 2. Primal variables **y**, **r**, and **e**;
- 3. Dual variables λ_y , λ_r , and λ_e .

Choosing GCN as Ψ constitutes our primal-dual graph convolutional (PDG) power network.

S. Segarra, A. Swami, Z. Zhao

Proposed solution (before FL)

Two-stage solution with two separate learning models.

- 1. Before FL, train a power allocation policy model (see below).
- 2. During FL, apply the policy model to upload **local FL models** in each FL iteration that updates the **global FL model**.

RICE 🚯 📴 VCOM

Proposed solution (during FL)

FL system:

FL pipeline with power allocation policy:

Finish

Graph-based ML for Wireless Comms.

May 5th, 2024 60 / 116

PD learning curves for the power policy

Learning curves² of PDG demonstrate convergence to (a) delay constraint, (b) energy constraint, and (c) objective PSR.

²Constraint constants r_0 and e_0 are annotated as dashed lines in (a) and (b). Larger markers in (c) are where all workers satisfy both constraints.

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 61 / 116

RICE 🚯 📴 VEOM

Communication proxy

Performance comparison (**system-level transmission error rate**) of PDG to other power allocation methods under different network configs:

PDG ensures **more accurate transmissions** than the topology- agnostic learning-based PDM and other rule-based power methods.

Orth: Chen et al., TWC'20

S. Segarra, A. Swami, Z. Zhao

FL performance on I.I.D. data

Tests on FL benckmark tasks: (a) NLP: IMDb sentiment classification, (b) MNIST digit classification, and (c) regression: Air quality prediction.

Figures show global FL validation errors vs completed FL iterations.

PDG consistently results in the **best FL** performance, close to ideal.

- Rand

--- Orth

10

- PDM

20

EL Global Iteration

- PDG

an.

40

 $\frac{50}{50}$ (a)

--+-- Ideal FL

Non-I.I.D. case

Local datasets may have different types, degrees, or patterns of random noise specific to the device or local environment.

(a) Heterogeneous AWGN. Bars denote corresponding worker weights that reflect local data quality.

(c) Federated MNIST classification performance averaged across 5 random realizations. Results are shown for both Gaussian (noisy data) and Dirichlet (imbalanced labels) non-i.i.d. scenarios.

Boning Li et al. ICASSP'22, TWC'23

S. Segarra, A. Swami, Z. Zhao

Part III: Graph-based ML for Wireless Networking

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 65 / 116

Introduction: wireless multihop networks

- ▶ User devices self-organization
- ▶ Infrastructure-less communications
 - \Rightarrow Military and disaster relief
- Emerging applications
 - \Rightarrow wireless backhaul, satellite constellation
 - \Rightarrow Traffic offloading (D2D, IoT)

Fundamental wireless networking tasks

▶ Routing: send packets from source(s) to destination(s) through relay nodes

- \Rightarrow Path finding: 1-to-1 (unicast), 1-to-many: multi-cast, broadcast
- \Rightarrow Orchestration: cluster head election, virtual backbone establishment
- ► Link scheduling: decide which links to be activated in each time slot ⇒ MaxWeight scheduling, carrier sensing multiple access (CSMA)
- **Combinatorial & discrete** nature
- **Distributed solutions** are preferred (our focus)

S. Segarra, A. Swami, Z. Zhao

Fundamental wireless networking tasks

▶ Routing: send packets from source(s) to destination(s) through relay nodes

- \Rightarrow Path finding: 1-to-1 (unicast), 1-to-many: multi-cast, broadcast
- \Rightarrow Orchestration: cluster head election, virtual backbone establishment
- ► Link scheduling: decide which links to be activated in each time slot ⇒ MaxWeight scheduling, carrier sensing multiple access (CSMA)
- **Combinatorial & discrete** nature
- **Distributed solutions** are preferred (our focus)
- ▶ Performance analysis: latency, jitter, throughput, packet drops ...

S. Segarra, A. Swami, Z. Zhao

Why wireless networking is so challenging?

- \blacktriangleright Model: queueing networks subject to conflict constraints \rightarrow no analytical model
- ▶ Instantaneous link rates fluctuate due to channel fading
- Changing network topology due to mobility
- ▶ Link capacity coupled with routing & scheduling decisions and input flow rates

S. Segarra, A. Swami, Z. Zhao

GNNs for networking: opportunities and challenges

0 0 1		
Formulate networking tasks as link prediction,	challenging	_
node classification, graph embedding		
Domain knowledge: observe rules, constraints	hard	easy
Discrete decision-making	hard	easy
Data labeling for supervised learning	hard	_
Overall limitation	functionality	optimality

S. Segarra, A. Swami, Z. Zhao

Part III Overview

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 70 / 116

Part III Overview

Graph-based machine learning for

- ▶ Max-Weight link scheduling
- ▶ Repetitive combinatorial optimization
- ▶ Conflict-aware packet routing
- ▶ Rapid network simulation
- Summary & future applications

Let's start with a particular networking task Link Scheduling with Graph Neural Networks ³⁴

⁴Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Link Scheduling Using Graph Neural Networks," in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023

S. Segarra, A. Swami, Z. Zhao

³Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Distributed Scheduling Using Graph Neural Networks," IEEE ICASSP 2021, pp. 4720-4724

Link scheduling

Decide when and which links to be activated

- Medium Access Control (MAC)
 - ▶ Synchronized, time-slotted system
 - ▶ Orthogonal multiple access
 - A resource block is exclusively assigned to an active link
 - In spatial, temporal, frequency, or code domains
 - ▶ Bidirectional link \rightarrow Undirected edge

Link scheduling: graph modeling

Conflict graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- $\blacktriangleright \quad \text{Vertex } v \in \mathcal{V} \to \text{wireless link}$
- Edge $e \in \mathcal{E} \to \text{conflict relationship}$ between two wireless links that
 - \Rightarrow share the same device (interface)

 $\Rightarrow \text{ interfere each other if both activated}$ Vertex weights $\mathbf{u} \in \mathbb{R}^{|\mathcal{V}|}_+ = [u(v)|v \in \mathcal{V}]$

▶ u(v): utility of activating wireless link v

Conflict graph

Link scheduling: graph modeling

Conflict graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- $\blacktriangleright \quad \text{Vertex } v \in \mathcal{V} \to \text{wireless link}$
- Edge $e \in \mathcal{E} \to \text{conflict relationship}$ between two wireless links that
 - \Rightarrow share the same device (interface)

 $\Rightarrow \text{ interfere each other if both activated}$ Vertex weights $\mathbf{u} \in \mathbb{R}^{|\mathcal{V}|}_+ = [u(v)|v \in \mathcal{V}]$

▶ u(v): utility of activating wireless link v

Connectivity + Interference

Utility function $u: \mathcal{V} \to \mathbb{R}_+$

• E.g.,
$$u(v) = q(v)l(v)$$
, $u(v) = \min\{q(v), l(v)\}$ for throughput maximization
 \Rightarrow Queue length $q(v)$, link rate $l(v)$

 $\Rightarrow \text{ Vector form } \mathbf{u} = \mathbf{q} \odot \mathbf{l}, \ \mathbf{u}_v = u(v), \ \mathbf{q}_v = q(v), \ \mathbf{l}_v = l(v)$

S. Segarra, A. Swami, Z. Zhao

Max-Weight scheduling: MWIS formulation

Maximum weighted independent set (MWIS)

Consider a conflict graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} and \mathcal{E} describe all the links and their conflict relationships in the wireless network, respectively, and a utility function $u : \mathcal{V} \to \mathbb{R}_+$. The optimal schedule is given by

$$\mathbf{v}^* = \underset{\mathbf{v} \subseteq \{0,1\}^{|\mathcal{V}|}}{\operatorname{argmax}} \mathbf{v}^\top \mathbf{u}$$
(7a)
.t. $\mathbf{v}_i + \mathbf{v}_j \le 1$, $\forall (i,j) \in \mathcal{E}$. (7b)

- MWIS problem is NP-hard
- ▶ Fast & distributed heuristics in practice

S. Segarra, A. Swami, Z. Zhao

Distributed local greedy solver (LGS), $\mathcal{O}(\log |\mathcal{V}|)$

LGS⁵ denoted as function $\hat{\mathbf{v}}_{Greedy} = h(\mathcal{G}, \mathbf{u})$, inspired by Ruby's algorithm⁶

- ▶ All links initialized as undecided $\mathbf{v} = -\mathbf{1}$
- Link *i* is scheduled ($\mathbf{v}_i = 1$) if its utility exceeds all neighbors

$$u(i) > \max_{j \in \mathcal{N}(i)} u(j)$$

 \bigcirc

Link *i* is muted ($\mathbf{v}_i = 0$) if one of its neighbors is scheduled

▶ Undecided nodes enter next iteration until all nodes are decided

⁵C. Joo and N. B. Shroff, "Local greedy approximation for scheduling in multihop wireless networks," IEEE Trans. on Mobile Computing, vol. 11, no. 3, pp. 414–426, 2012

 $^{6}\mathrm{M}.$ Luby. "A simple parallel algorithm for the maximal independent set problem." SIAM journal on computing 15.4 (1986): 1036-1053.

S. Segarra, A. Swami, Z. Zhao

An illustrative example 7 - Local greedy solver (LGS) .

Total utility

12

٩

Why not just let a GNN directly output solution?

Graph neural networks (GNNs)

- ▶ Distributed & fast execution
- ▶ Generalize to different topologies
- ▶ Unable to encode relational constraints in COPs, e.g., $\mathbf{v}_i + \mathbf{v}_j \leq 1$, $\forall (v_i, v_j) \in \mathcal{E}$.

Why not just let a GNN directly output solution?

Graph neural networks (GNNs)

- ▶ Distributed & fast execution
- ▶ Generalize to different topologies
- ▶ Unable to encode relational constraints in COPs, e.g., $\mathbf{v}_i + \mathbf{v}_j \leq 1$, $\forall (v_i, v_j) \in \mathcal{E}$.

Graph convolutional layer (local form)

$$\mathbf{X}_{e*}^{l} = \sigma_l \left(\mathbf{X}_{e*}^{l-1} \, \mathbf{\Theta}_0^l + \left[\mathbf{X}_{e*}^{l-1} - \sum_{u \in \mathcal{N}_{\mathcal{G}^c}(e)} \frac{\mathbf{X}_{u*}^{l-1}}{\sqrt{d(e)d(u)}} \right] \mathbf{\Theta}_1^l \right)$$

Example: MWIS problem on a regular graph, where every node has identical weight

S. Segarra, A. Swami, Z. Zhao
GCN-enhanced local greedy solver (GCN-LGS)

Function notations: LGS: $\hat{\mathbf{v}}_{Greedy} = h(\mathcal{G}, \mathbf{u})$ GCN-LGS: $\hat{\mathbf{v}} = h(\mathcal{G}, \mathbf{z} \odot \mathbf{u})$ GCN: $\mathbf{z} = \Psi_{\mathcal{G}}(\mathbf{S}; \omega),$

 ω : trainable parameters

GCN-enhanced local greedy solver (GCN-LGS)

Function notations: LGS: $\hat{\mathbf{v}}_{Greedy} = h(\mathcal{G}, \mathbf{u})$ GCN-LGS: $\hat{\mathbf{v}} = h(\mathcal{G}, \mathbf{z} \odot \mathbf{u})$ GCN: $\mathbf{z} = \Psi_{\mathcal{G}}(\mathbf{S}; \omega),$

 $\omega :$ trainable parameters

GCN-enhanced local greedy solver (GCN-LGS)

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

RICE 🚯 DEVCOM

May 5th, 2024 77 / 116

GCN Training: customized deterministic policy gradient⁷

Why reinforcement learning?

- Avoid data labeling MWIS problem is NP-hard
- Treats non-differentiable LGS as part of the environment

⁷Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Link Scheduling Using Graph Neural Networks," in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

RICE 🚯 *विहरсом*

GCN Training: customized deterministic policy gradient 7

Why reinforcement learning?

- Avoid data labeling MWIS problem is NP-hard
- Treats non-differentiable LGS as part of the environment

Gradient proxy

$$\omega^* = \underset{\omega}{\operatorname{argmax}} J(\omega) \tag{8a}$$

s.t.
$$J(\omega) = \mathbb{E}_{(\mathcal{G}, \mathbf{S}, \mathbf{u}) \sim \Omega} \left[\gamma(\mathcal{G}, \mathbf{u}, \mathbf{z}) \right]$$
, (8b)

$$\gamma(\mathcal{G}, \mathbf{u}, \mathbf{z}) = \frac{\hat{\mathbf{v}}^{\top} \mathbf{u}}{\hat{\mathbf{v}}_{Greedy}^{\top} \mathbf{u}} , \qquad (8c)$$

$$\hat{\mathbf{v}}_{Greedy} = h(\mathcal{G}, \mathbf{u}) ,$$
 (8d)

$$\hat{\mathbf{v}} = h(\mathcal{G}, \mathbf{z} \odot \mathbf{u}) ,$$
 (8e)

$$\mathbf{z} = \Psi_{\mathcal{G}}(\mathbf{S}; \boldsymbol{\omega}) \ . \tag{8f}$$

- Weight update $\omega = \omega + \alpha \widehat{\nabla J(\omega)}$, learning rate

⁷Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Link Scheduling Using Graph Neural Networks," in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

RICE 🥻 🗖

💸 RICE 🔕 🕼

Numerical results: throughput maximization⁸

Key Takeaways for GCN-LGS

- Close nearly half optimality gap
- ▶ Reusable GCN model
 - \Rightarrow Inner loop of LGS: GCN-LGS-it
 - \Rightarrow Centralized rollout search (CRS)
- ► Lightweight GCN: 2 trainable weights
- Failsafe: can fallback to vanilla LGS for basic functionality if GCN went crazy
- ▶ Low complexity: $\mathcal{O}(\log |\mathcal{V}|)$

- ▶ 100 nodes, $40 \sim 60$ links
- Utility function $u(v) = \min[r(v), q(v)]$
- ► Flooding traffic
- 100 graphs \times 10 instances \times 200 time steps

⁸Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Link Scheduling Using Graph Neural Networks," in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023

S. Segarra, A. Swami, Z. Zhao

How to generalize GCN-LGS to broader networking tasks?

 $^9{\rm Z}.$ Zhao, A. Swami, S. Segarra, "Graph-based Deterministic Policy Gradient for Repetitive Combinatorial Optimization Problems," ICLR 2023

S. Segarra, A. Swami, Z. Zhao


```
How to generalize GCN-LGS to broader networking tasks?
Graph-based deterministic policy gradient
(GDPG-Twin) for
repetitive combinatorial optimization problems
(R-COPs)<sup>9</sup>
```

S. Segarra, A. Swami, Z. Zhao

⁹Z. Zhao, A. Swami, S. Segarra, "Graph-based Deterministic Policy Gradient for Repetitive Combinatorial Optimization Problems," ICLR 2023

Combinatorial Optimization Problem (COP)

Characters

- \blacktriangleright Input: a graph with cost vector ${\bf c}$
- \blacktriangleright Decision variables ${\bf x}$
 - \Rightarrow Discrete (integer) constraints
 - \Rightarrow Relational constraints
- ▶ Minimize total cost
- ▶ Non-convex, often NP-hard!

Maximum Weighted Independent Set

$$\mathbf{v}^* = \operatorname*{argmax}_{\mathbf{v} \subseteq \{0,1\}^{|\mathcal{V}|}} \mathbf{u}^\top \mathbf{v}$$
(9a)
s.t. $\mathbf{v}_i + \mathbf{v}_j \le 1$, $\forall (i,j) \in \mathcal{E}$. (9b)

Source: Wikipedia - Maximal independent set

- Graph-based Markov decision process
 - \Rightarrow Network state as a weighted graph $(\mathcal{V}(t), \mathcal{E}(t), \mathbf{c}(t))$
 - \Rightarrow Network state of t + 1 depends on decisions $\mathbf{x}(t)$
 - \Rightarrow Decision $\mathbf{x}(t)$ found by solving a COP on $(\mathcal{V}(t), \mathcal{E}(t), \mathbf{c}(t))$
 - \Rightarrow Cost vector $\mathbf{c}(t)$ changes rapidly compared to topology $(\mathcal{V}(t), \mathcal{E}(t))$

- Graph-based Markov decision process
 - \Rightarrow Network state as a weighted graph $(\mathcal{V}(t), \mathcal{E}(t), \mathbf{c}(t))$
 - \Rightarrow Network state of t + 1 depends on decisions $\mathbf{x}(t)$
 - \Rightarrow Decision $\mathbf{x}(t)$ found by solving a COP on $(\mathcal{V}(t), \mathcal{E}(t), \mathbf{c}(t))$
 - \Rightarrow Cost vector $\mathbf{c}(t)$ changes rapidly compared to topology $(\mathcal{V}(t), \mathcal{E}(t))$
- Many applications

▶ Practical restrictions: limited runtime and/or distributed execution

S. Segarra, A. Swami, Z. Zhao

Restrictions on runtime and distributed execution

e.g., COP instances coming at data or video frame rates in wireless link scheduling or computer vision

Centralized COP solver

- \Rightarrow High communication overhead to collect full network state to a server
- \Rightarrow High computational complexity, scale up quickly by network size
- \Rightarrow Single point of failure
- ▶ Distributed COP solver for scalability and robustness
 - \Rightarrow Fast & robust execution using only neighborhood information (exchange)

S. Segarra, A. Swami, Z. Zhao

GDPG-Twin: a general actor-critic framework for R-COP $^{\bigotimes}$ RICE \bigotimes

- ► Actor GNN exploits graph structure
- ► Algorithmic heuristic guarantee correctness (relational constraints)
- ▶ Twin GNN bridges the non-differentiability gap of algorithmic heuristic

S. Segarra, A. Swami, Z. Zhao

Independent R-COP

- ► Goal: reduce optimality gap with minimal overhead
 - \Rightarrow Optimize each COP instance individually, ignore inter-state dependency
- ▶ GNN encodes the underlying topology, embeddings reused for many time steps
- $\blacktriangleright \text{ Expected element-wise outcome } \hat{\mathbf{o}} \approx \mathbf{o} = \mathbb{E}(\mathbf{c} \odot \mathbf{x})$
- Gradient on intermediate action $\nabla_{\mathbf{Z}} \mathbf{1}^{\top} \hat{\mathbf{o}} \approx \nabla_{\mathbf{Z}} \mathbb{E}(\mathbf{c}^{\top} \mathbf{x})$

S. Segarra, A. Swami, Z. Zhao

Independent R-MWIS

Figure 1: Approximation ratios (Larger is better) of the vanilla and GCNN-enhanced distributed heuristics for MWIS problem (max), w.r.t. the optimal solver.

Approximation ratio

Figure 3: Average local communication complexity of GCNN-enhanced and vanilla LGS-MWIS solvers per instance, in rounds, excluding the GCNN ($N = \infty$).

Figure 8: Performance trajectories of GCNN-enhanced LGS-MWIS trained by GDPG-Twin and ZOOs with 2-point and 11-point gradient estimations. Larger is better. GDPG-Twin needs fewer evaluations of h(.).

Training complexity

Benchmark: ZOO (zeroth-order optimization)

- ▶ Tested on 500 random graphs from **Erdős–Rényi** model
- ▶ Baseline: LGS¹⁰, Benchmark: Zeroth-order optimization (ZOO)

 $^{^{10}}$ C. Joo and N. B. Shroff, "Local Greedy Approximation for Scheduling in Multihop Wireless Networks," in IEEE Trans. on Mobile Computing, vol. 11, no. 3, pp. 414-426, March 2012.

Generalize to more Independent R-COPs

Figure 2: Approximation ratio (Smaller is better) of the GCNN-enhanced w.r.t. the vanilla Greedy-MWDS for MWDS problem (min) on 4 sets of random graphs.

Figure 5: Approximation ratio (Smaller is better) of the GCNN-enhanced w.r.t. vanilla K-SPH-NWST for NWST problem on 4 sets of random graphs. NWST is a minimization (min) problem.

Figure 6: Approximation ratios (Smaller is better) of the vanilla and GCNN-enhanced distributed heuristics w.r.t. a centralized heuristic for MWCDS problem on 4 sets of random graphs. MWCDS is a min. problem.

R-COP in graph-based Markov decision process

- ► Goal: optimize long-term system-level objective
 - \Rightarrow Inter-state dependency MUST be considered
- ► GNN encodes network state $(\mathcal{V}(t), \mathcal{E}(t), \mathbf{S}(t))$ into cost vector $\mathbf{c}(t)$ in each time step
 - \Rightarrow Consider future element-wise rewards
- Expected element-wise outcome $\hat{\mathbf{o}}(t) \approx \mathbf{o}(t) = \mathbb{E}[\mathbf{r}(t) + \gamma \hat{\mathbf{o}}(t+1)]$
- ▶ Gradient on intermediate action $\nabla_{\mathbf{c}(t)} f_{obj}(\hat{\mathbf{o}}(t)), f_{obj}$ is a linear function

S. Segarra, A. Swami, Z. Zhao

Delay-oriented link scheduling

 $\mathbf{l}(t)$ link rates, $\mathbf{q}(t)$ queue lengths, $\mathbf{a}(t)$ new packet arrivals

Figure 7: GDPG-Twin achieves similar network-wide mean and medium backlogs (smaller is better) of lookahead RL (Zhao et al., 2022b) in training a distributed link scheduler, using only $\frac{1}{5}$ evaluations of $h(\cdot)$ of it.

- ▶ The ML pipeline is supposed to improve delay on centralized networks
- GDPG-Twin can do the same job as *ad-hoc* RL scheme^a at $\frac{1}{5}$ computational cost

S. Segarra, A. Swami, Z. Zhao

^aZ. Zhao, G. Verma, A. Swami and S. Segarra, "Delay-Oriented Distributed Scheduling Using Graph Neural Networks," IEEE ICASSP 2022, pp. 8902-8906

Recap on GDPG-Twin for R-COPs

▶ Single-agent reinforcement learning for: scalar action & reward, state in regular domain

Environment

Recap on GDPG-Twin for R-COPs

▶ Single-agent reinforcement learning for: scalar action & reward, state in regular domain

- ▶ GDPG-Twin as a general reinforcement learning framework for distributed networks
 - \Rightarrow High-dimensional parallel action, reward, & state in irregular (graph) domain
 - \Rightarrow Generalize to dynamic graphs thanks to shared core model in GNN
 - \Rightarrow Follow engineered rules, leveraging domain knowledge

S. Segarra, A. Swami, Z. Zhao

Encode Network Context into Backpressure Routing^{abc}

^aZ. Zhao, B. Radojicic, G. Verma, A. Swami and S. Segarra, "Delay-Aware Backpressure Routing Using Graph Neural Networks," IEEE ICASSP 2023, pp. 1-5

^bZ. Zhao, G. Verma, A. Swami and S. Segarra, "Enhanced Backpressure Routing Using Wireless Link Features," IEEE CAMSAP, 2023, pp. 271-275

^cZ. Zhao, B. Radojičić, G. Verma, A. Swami, S. Segarra, Biased Backpressure Routing Using Link Features and Graph Neural Networks, submitted to IEEE Trans. on Machine Learning In Comms. and Netw.

From hop distance to conflict-aware shortest path

Destination Source

Shortest hop count bias promotes the orange route, of which both links have 8 conflicting neighbors, thus less likely being scheduled (link duty cycle = 1/9)

Assume every link has an equal chance of being scheduled

> Shortest path bias based on link duty cycle promotes the green route, of which links have fewer conflicting neighbors, thus more likely to be scheduled (higher link duty cycle)

Insight: In wireless networks, links should not be treated equally since they introduce different latencies depending on local conflict topology.

S. Segarra, A. Swami, Z. Zhao

From hop distance to conflict-aware shortest path

Insight: In wireless networks, links should not be treated equally since they introduce different latencies depending on local conflict topology.

Graph modeling

- ▶ Connectivity graph $\mathcal{G}^n = (\mathcal{V}, \mathcal{E})$
- ▶ Conflict graph $\mathcal{G}^c = (\mathcal{E}, \mathcal{C})$

Per-hop distance $\delta_e, e \in \mathcal{E}$

- ► Shortest hop distance, $\delta_e = 1$
- With link duty cycle $0 < x_e < 1$

 \Rightarrow Definition 1: $\delta_e = 1/x_e$

- \Rightarrow Definition 2: $\delta_e = \frac{\bar{l}}{x_e l_e}$
- ► Link duty cycle predicted by GCNN $\mathbf{x} = \Psi_{\mathcal{G}^c}(\mathbf{S}; \omega)$

From hop distance to conflict-aware shortest path

Insight: In wireless networks, links should not be treated equally since they introduce different latencies depending on local conflict topology.

Graph modeling

- Connectivity graph $\mathcal{G}^n = (\mathcal{V}, \mathcal{E})$
- ▶ Conflict graph $\mathcal{G}^c = (\mathcal{E}, \mathcal{C})$

Per-hop distance $\delta_e, e \in \mathcal{E}$

- ► Shortest hop distance, $\delta_e = 1$
- ► With link duty cycle $0 < x_e < 1$

 \Rightarrow Definition 1: $\delta_e = 1/x_e$

- \Rightarrow Definition 2: $\delta_e = \frac{\bar{l}}{x_e l_e}$
- ► Link duty cycle predicted by GCNN $\mathbf{x} = \Psi_{\mathcal{G}^c}(\mathbf{S}; \omega)$

Graph convolutional layer (local form)

$$\mathbf{X}_{e*}^{l} = \sigma_l \left(\mathbf{X}_{e*}^{l-1} \, \mathbf{\Theta}_0^l + \left[\mathbf{X}_{e*}^{l-1} - \sum_{u \in \mathcal{N}_{\mathcal{G}^c}(e)} \frac{\mathbf{X}_{u*}^{l-1}}{\sqrt{d(e)d(u)}} \right] \mathbf{\Theta}_1^l \right)$$

S. Segarra, A. Swami, Z. Zhao

Conflict-aware shortest path for Backpressure routing¹¹

SJB: Sojourn time of all packets in the queue [L. Hai, TVT, 2018] HOL: Sojourn time of head-of-line packet in the queue [B. Ji, ToN, 2012] EDR: Enhanced Dynamic Routing [M. Neely, JSAC, 2005]

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

🕅 RICE 🗛 *Белсом*

¹¹Z. Zhao, B. Radojičić, G. Verma, A. Swami, S. Segarra, Biased Backpressure Routing Using Link Features and Graph Neural Networks, submitted to IEEE Trans. on Machine Learning In Comms. and Netw., under review.

May 5th, 2024 93 / 116

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 94 / 116

New approach to network simulation & optimization Network Digital Twin for Fast KPI prediction¹²

Credit: Boning Li

¹²B. Li, T. Efimov, A. Kumar, J. Cortes, G. Verma, A. Swami, and S. Segarra. "Learnable Digital Twin for Efficient Wireless Network Evaluation." In IEEE MILCOM, pp. 661-666., 2023.

S. Segarra, A. Swami, Z. Zhao

🗞 RICE 🙆 🙋

Introduction of network simulators

S. Segarra, A. Swami, Z. Zhao

🗞 RICE 🔕 🙋

Introduction of network simulators

Example inputs: NSFNet (14 nodes, 42 links, 10 flows/paths)

- Each flow corresponds to a set of KPIs (key performance indicators)
 - \Rightarrow Guide the design, evaluation, and optimization of networks & protocols
- Network simulator emulates every step in the network protocols and wireless channels
 ⇒ Very slow, difficult to scale up

S. Segarra, A. Swami, Z. Zhao

What network digital twin can do?

- ► Fast KPI prediction and differentiable process
- Digital twin of network simulators
 - \Rightarrow Predict KPIs rapidly (fast execution)
 - \Rightarrow Enable iterative optimization (fast execution)
 - \Rightarrow Training machine learning-based network solutions (differentiability)

S. Segarra, A. Swami, Z. Zhao

Message-passing architecture of GNNs (PLAN-Net)

Algorithm 1 PLAN-Net algorithm.	
Input: Graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, routing list \mathcal{R}	
Initialize: $\rho_p, c_l, d_n > 0$	
1: $\mathbf{h}_p^0 \leftarrow [\rho_p, 0, \cdots, 0]^\top, \forall p \in \mathcal{P}$	
2: h	$\leftarrow [c_l, 0, \cdots, 0]^\top, \forall l \in \mathcal{L}$
3: h ⁰ _n	$\left(\leftarrow \left[d_n, 0, \cdots, 0 \right]^{\top}, \forall n \in \mathcal{N} \right)$
4: for	$t = 0, 1, \cdots, T-1$ do
5:	(i) Update path states. RNN
6:	for every path p in \mathcal{P} do
7:	for every link l in p do
8:	$\mathbf{h}_{n}^{t} \leftarrow \text{RNN}_{t}(\mathbf{h}_{n}^{t}, \text{cat}[\mathbf{h}_{l}^{t}, \mathbf{h}_{n}^{t}]), \text{ where } n = \text{src}(l)$
9:	$\triangleright n$ is the source node of l
10:	$\mathbf{m}_{p,l}^t \leftarrow \mathbf{h}_p^t$
11:	end for
12:	$\mathbf{h}_{p}^{t+1} \leftarrow \mathbf{h}_{p}^{t}$
13:	end for
14:	(ii) Update link states. MI P
15:	for every link l in \mathcal{L} do
16:	$\mathbf{h}_{l}^{t+1} \leftarrow \mathrm{MLP}_{t}(\mathrm{cat}[\mathbf{h}_{l}^{t}, \mathbf{h}_{n}^{t}, \mathrm{agg}\{\mathbf{m}_{p,l}^{t} \mid l \in p\}])$
17:	$\triangleright p$ is all paths that contain l
18:	end for
19:	(iii) Update node states. GCN
20:	for every node n in \mathcal{G} do
21:	$\mathbf{h}_{n}^{t+1} \leftarrow \operatorname{GCN}_{t}(\operatorname{cat}[\mathbf{h}_{n}^{t}, \operatorname{agg}\{\mathbf{h}_{l}^{t} \mid l = L^{+}(n)\}]; \mathcal{G})$
22:	$\triangleright l$ is all links out of n
23:	end for
24: end for	
25: (iv) Readout.	
26: $\mathbf{y} = \mathrm{MLP}(\mathbf{h}_p^T)$	

S. Segarra, A. Swami, Z. Zhao

PLAN-Net (Path, Link, And Node)

- ▶ PLAN-Net improves existing RouteNet¹³ for wired networks
- ▶ Leverage node embeddings to distinguish different interference topologies

¹³K. Rusek, et al., "RouteNet: Leveraging graph neural networks for network modeling and optimization in SDN," IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2260–2270, 2020.

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 99 / 116

Training and evaluation

- ▶ Supervised training, using ns-3 single-run output as training labels
- ▶ Performance evaluated by mean absolute error (MAE)

Numerical results: wireless networks of grid topology

- Alter transmit power to test for different levels of interference
- ▶ PLAN-Net achieves the lowest MAE
- Generalize to different network topologies

SD

Numerical results: regular vs perturbed grid topologies

Kev take-aways

- ▶ PLAN-Net is more accurate than a single-run of ns-3
- PLAN-Net can generalize to random perturbation of network topology
- ▶ PLAN-Net runs 1000x faster than ns-3, e.g., $100s \rightarrow 0.01$ -0.1 s

S. Segarra, A. Swami, Z. Zhao

Summary & future work

▶ Graph-based ML: permutation invariant, distributed (scalable), no data labeling
⇒ Networks are dynamic and parallel & networking tasks are often discrete

- ▶ Hybrid ML pipelines \rightarrow graph learning + domain knowledge = performance boost
- ▶ Digital twin \rightarrow fast KPI prediction and action critic = new optimization tools

S. Segarra, A. Swami, Z. Zhao

Potential applications of graph-based ML in large-scale networked systems

¹⁴Z. Zhao, J. Perazzone, G. Verma and S. Segarra, "Congestion-Aware Distributed Task Offloading in Wireless Multi-Hop Networks Using Graph Neural Networks," IEEE ICASSP, 2024, pp. 8951-8955.

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 104 / 116

Potential applications of graph-based ML in large-scale networked systems

Edge computing & AI in wireless multihop networks¹⁴

¹⁴Z. Zhao, J. Perazzone, G. Verma and S. Segarra, "Congestion-Aware Distributed Task Offloading in Wireless Multi-Hop Networks Using Graph Neural Networks," IEEE ICASSP, 2024, pp. 8951-8955.

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 104 / 116

Congestion-aware distributed task offloading

Extended graph

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 105 / 116

Congestion mitigation in distributed task offloading¹⁵

Barabási–Albert model

Servers

m = 2

Clients⁻

Tasks

If a task is conaested, its execution latency > 1000 time slots

Local: all clients can execute their own tasks without congestion GNN: some tasks offloaded to remote servers without congestion, reducing average execution latency compared to the local policy Baseline: 4%~15% congestion ratio, and high average execution latency (500)

¹⁵Z. Zhao, J. Perazzone, G. Verma and S. Segarra, "Congestion-Aware Distributed Task Offloading in Wireless Multi-Hop Networks Using Graph Neural Networks," IEEE ICASSP, 2024, pp. 8951-8955.

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th. 2024 106 / 116

🔊 RICE 🏠

Бетсом

Conclusions and Future Directions

May 5th, 2024 107 / 116

- ▶ What are graph neural networks (GNNs)?
- ▶ Why are GNNs well suited to tackle problems in wireless communications?
- ▶ How have GNNs been applied to specific problems?
- ▶ What are open problems/challenges to which you can contribute?

- Class of parametric, layered, non-linear functions that incorporate information both from features and graph structure
- ▶ Why are GNNs well suited to tackle problems in wireless communications?
- ▶ How have GNNs been applied to specific problems?
- ▶ What are open problems/challenges to which you can contribute?

- Class of parametric, layered, non-linear functions that incorporate information both from features and graph structure
- ▶ Scalability, distributed implementation, and permutation equivariance/invariance
- ▶ How have GNNs been applied to specific problems?
- ▶ What are open problems/challenges to which you can contribute?

- Class of parametric, layered, non-linear functions that incorporate information both from features and graph structure
- ▶ Scalability, distributed implementation, and permutation equivariance/invariance
- ▶ We covered power allocation & beamforming, link scheduling, and routing problems
- ▶ What are open problems/challenges to which you can contribute?

Going back to our Key Takeaways

- Class of parametric, layered, non-linear functions that incorporate information both from features and graph structure
- ▶ Scalability, distributed implementation, and permutation equivariance/invariance
- We covered power allocation & beamforming, link scheduling, and routing problems
- Hopefully, the technical discussion have triggered some thoughts. We will also discuss open directions now

▶ The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)

- ▶ The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)
- ► Implementation in real wireless networks
 - \Rightarrow Fading, in exact channel info, packet drops, adversarial/malfunctioning nodes
 - \Rightarrow Specific protocols for message passing implementation

Working with Real Data

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 110 / 116

RICE 🚯 📴 VEOM

- The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)
- ▶ Implementation in real wireless networks
 - \Rightarrow Fading, inexact channel info, packet drops, adversarial/malfunctioning nodes
 - \Rightarrow Specific protocols for message passing implementation

RICE 🚯 🙋

- The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)
- ▶ Implementation in real wireless networks
 - \Rightarrow Fading, inexact channel info, packet drops, adversarial/malfunctioning nodes
 - \Rightarrow Specific protocols for message passing implementation
- ► Efficient distributed training
 - \Rightarrow New challenges in distributed optimization
 - \Rightarrow Key for implementation in real systems

RICE 🚯 📴 VCOM

- The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)
- ▶ Implementation in real wireless networks
 - \Rightarrow Fading, in exact channel info, packet drops, adversarial/malfunctioning nodes
 - \Rightarrow Specific protocols for message passing implementation
- ► Efficient distributed training
 - \Rightarrow New challenges in distributed optimization
 - \Rightarrow Key for implementation in real systems
- ► Combination with generative AI
 - \Rightarrow Data augmentation and large training datasets

RICE 🚯 🙋

- The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)
- ▶ Implementation in real wireless networks
 - \Rightarrow Fading, inexact channel info, packet drops, adversarial/malfunctioning nodes
 - \Rightarrow Specific protocols for message passing implementation
- ▶ Efficient distributed training
 - \Rightarrow New challenges in distributed optimization
 - \Rightarrow Key for implementation in real systems
- ► Combination with generative AI
 - \Rightarrow Data augmentation and large training datasets
- ▶ Privacy-preserving message passing in GNNs

- The 'easy' one \Rightarrow Applications to other problems in wireless (and beyond)
- ▶ Implementation in real wireless networks
 - \Rightarrow Fading, in exact channel info, packet drops, adversarial/malfunctioning nodes
 - \Rightarrow Specific protocols for message passing implementation
- ► Efficient distributed training
 - \Rightarrow New challenges in distributed optimization
 - \Rightarrow Key for implementation in real systems
- ► Combination with generative AI
 - \Rightarrow Data augmentation and large training datasets
- ▶ Privacy-preserving message passing in GNNs
- ▶ Uncertainty and implementation in critical infrastructure

Thank you

Santiago Segarra (segarra@rice.edu) Ananthram Swami (ananthram.swami.civ@army.mil) Zhongyuan Zhao (zhongyuan.zhao@rice.edu)

S. Segarra, A. Swami, Z. Zhao

Graph-based ML for Wireless Comms.

May 5th, 2024 112 / 116

Related Publications

- 1. Eli Chien, Mufei Li, Anthony Aportela, Kerr Ding, Shuyi Jia, Supriyo Maji, Zhongyuan Zhao, Victor Fung, Callie Hao, Yunan Luo, Olgica Milenkovic, David Pan, Santiago Segarra, Javier Duarte, and Pan Li. "Exploring the opportunities and challenges of graph neural networks in electrical engineering," Nature Reviews Electrical Engineering, 2024, (To appear).
- A. Chowdhury, G. Verma, C. Rao, A. Swami and S. Segarra, "Unfolding WMMSE Using Graph Neural Networks for Efficient Power Allocation," in IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 6004-6017, Sept. 2021.
- 3. A. Chowdhury, G. Verma, A. Swami and S. Segarra, "Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks," in IEEE Transactions on Wireless Communications, Oct. 2023
- 4. A. Chowdhury, G. Verma, C. Rao, A. Swami and S. Segarra, "Efficient Power Allocation Using Graph Neural Networks and Deep Algorithm Unfolding," IEEE ICASSP, Toronto, ON, Canada, 2021, pp. 4725-4729
- 5. A. Chowdhury, S. Paternain, G. Verma, A. Swami and S. Segarra, "Learning Non-myopic Power Allocation in Constrained Scenarios," 2023 57th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2023, pp. 804-808.
- 6. B. Li, J. Perazzone, A. Swami and S. Segarra, "Learning to Transmit with Provable Guarantees in Wireless Federated Learning," in IEEE Transactions on Wireless Communications, Dec. 2023
- 7. B. Li, A. Swami and S. Segarra, "Power Allocation for Wireless Federated Learning Using Graph Neural Networks," IEEE ICASSP, Singapore, Singapore, 2022, pp. 5243-5247

S. Segarra, A. Swami, Z. Zhao

Related Publications (continue)

- Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Distributed Scheduling Using Graph Neural Networks," IEEE ICASSP, Toronto, ON, Canada, 2021, pp. 4720-4724.
- Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, "Link Scheduling Using Graph Neural Networks," in IEEE Trans. on Wireless Communications, vol. 22, no. 6, pp. 3997-4012, 2023
- 10. Z. Zhao, A. Swami, S. Segarra, "Graph-based Deterministic Policy Gradient for Repetitive Combinatorial Optimization Problems," ICLR 2023
- Z. Zhao, G. Verma, A. Swami and S. Segarra, "Delay-Oriented Distributed Scheduling Using Graph Neural Networks," IEEE ICASSP, Singapore, Singapore, 2022, pp. 8902-8906
- 12. Z. Zhao, B. Radojicic, G. Verma, A. Swami and S. Segarra, "Delay-Aware Backpressure Routing Using Graph Neural Networks," IEEE ICASSP, Rhodes Island, Greece, 2023, pp. 1-5
- Z. Zhao, G. Verma, A. Swami and S. Segarra, "Enhanced Backpressure Routing Using Wireless Link Features," IEEE CAMSAP, Herradura, Costa Rica, 2023, pp. 271-275
- 14. Z. Zhao, B. Radojičić, G. Verma, A. Swami, S. Segarra, "Biased Backpressure Routing Using Link Features and Graph Neural Networks," submitted to IEEE Trans. on Machine Learning In Communications and Networking, (under review).
- 15. B. Li, T. Efimov, A. Kumar, J. Cortes, G. Verma, A. Swami, and S. Segarra. "Learnable Digital Twin for Efficient Wireless Network Evaluation." In IEEE MILCOM, pp. 661-666., 2023.
- Z. Zhao, J. Perazzone, G. Verma and S. Segarra, "Congestion-Aware Distributed Task Offloading in Wireless Multi-Hop Networks Using Graph Neural Networks," IEEE ICASSP, Seoul, Republic of Korea, 2024, pp. 8951-8955.

S. Segarra, A. Swami, Z. Zhao

Open Source Repositories

Physical layer: power control & MIMO

- 1. https://github.com/ArCho48/Unrolled-WMMSE
- 2. https://github.com/ArCho48/Unrolled-WMMSE-for-MU-MIMO
- 3. https://github.com/ArCho48/UWMMSE_MIMO
- 4. https://github.com/ArCho48/stability-UWMMSE
- 5. Power control for federated learning: https://github.com/bl166/usca_power_control
- 6. https://github.com/bl166/WirelessFL-PDG

Distributed combinatorial optimization

- 7. Link scheduling: https://github.com/zhongyuanzhao/distgcn
- 8. Delay-oriented link scheduling: https://github.com/zhongyuanzhao/gcn-dql
- 9. GDPG-Twin https://github.com/XzrTGMu/twin-nphard

Biased Backpressure routing, Network Digital Twin, and Multihop Offloading

- 10. Biased Backpressure routing: https://github.com/zhongyuanzhao/biasBP (to appear soon)
- 11. Network Digital Twin: https://github.com/bl166/wireless_digital_twin_milcom
- 12. Multihop Offloading: https://github.com/zhongyuanzhao/multihop-offload

S. Segarra, A. Swami, Z. Zhao

Python Libraries

