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The team

▶ Published 30+ papers in the area in the last 5 years
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Key Takeaways

By 5:30 pm today, you will be able to answer the following questions:

▶ What are graph neural networks (GNNs)?

▶ Why are GNNs well suited to tackle problems in wireless communications?

▶ How have GNNs been applied to specific problems?

▶ What are open problems/challenges to which you can contribute?
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Outline

Part I: Introduction to Graph Neural Networks
a) Graph-based ML and GNNs
b) Graphs, GNNs, and Wireless Networks

Part II: GNNs at the Physical Layer
a) Introduction to issues at the physical layer
b) Optimal Power Allocation & Beamforming: SISO and MIMO cases
c) Optimal Power Allocation: Federated Learning

Part III: Graph-based ML for Wireless Networking
a) Introduction to networking tasks
b) Link scheduling
c) Graph-based actor-critic reinforcement learning framework
d) GNNs for Backpressure Routing
e) Digital twin of wireless networks

Conclusions and Future Directions
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Part I: Introduction to Graph Neural Networks
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Graph-based Machine Learning

Graph-based ML leverages the network structure of the data to improve learning
and processing of these data
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Graph-based Machine Learning

Graph-based ML leverages the network structure of the data to improve learning
and processing of these data

▶ Classical supervised learning setting

⇒ Learn a parametric function that estimates the labels ⇒ ŷi = fθ(xi)
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Graph-based Machine Learning

Graph-based ML leverages the network structure of the data to improve learning
and processing of these data

▶ In some settings, relational structures between nodes are available

⇒ Friendship in social networks or inhibition in protein networks

⇒ Interference in comms networks
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Graph-based Machine Learning

Graph-based ML leverages the network structure of the data to improve learning
and processing of these data

▶ The structure also carries information about node labels

⇒ Estimate labels by combining both node features and graph structure
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Graph-based Machine Learning

Graph-based ML leverages the network structure of the data to improve learning
and processing of these data

ŷi = fθ({xj}Nj=1;A)
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Graph Representation Learning

▶ Convert raw graph data into a low-dimensional vector representation
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Graph Representation Learning

▶ Convert raw graph data into a low-dimensional vector representation

▶ Once in Rd, we can apply the whole ML machinery

▶ Embedding can be unsupervised

⇒ “Closeness” in the graph is preserved as “closeness” in Rd

▶ or supervised

⇒ Trained together with the downstream classifier

▶ We can embed other graph elements beyond nodes
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Graph Representation Learning
▶ We can embed nodes, edges, subgraphs, and whole graphs
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Embed nodes Embed edges (or node pairs) Embed subgraphs Embed graphs

Node classification / 
regression

Edge classification / 
regression

Link prediction

Subgraph “function” 
discovery

Graph classification / 
regression
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Graph Representation Learning

▶ “Shallow” embeddings (2014 - 2016): LINE, DeepWalk, node2vec

▶ O(N) parameters are needed ⇒ No parameter sharing

▶ Inherently transductive ⇒ needs retraining for new nodes

▶ No node features ⇒ key in many applications

▶ “Deep” embeddings (2016 - present): GCN, GraphSAGE, and many others

▶ Graph neural networks address limitations of shallow embeddings
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Graph-structured data

8/15

Graph Neural Networks
segarra@rice.eduGraph-Structured Data

I Discrete-time signal ) Relation of nearby values carries information

) Make the data structure explicit

) Nearby elements are related

) Two constitutive elements of SP: data structure and signal values

I Graph G = (V, E)

) V: set of nodes, E: set of edges

I Graph signals ) Associate a value to each node x : V ! R
I Matrix representation

) Adjacency matrix A, Laplacian matrix L

) Fixes ordering of the nodes ) Permutations
) Generic matrix S (support matrix, graph shift operator)

x1

x2

x3 x4

Sandryhaila, Moura, “Discrete Signal Processing on Graphs”, IEEE TSP, 2013

Shuman, Narang, Frossard, Ortega, Vandergheynst, “The Emerging Field of Signal Processing on Graphs”, IEEE SPM, 2013
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Graph convolutions

9/15

Graph Neural Networks
segarra@rice.eduGraph Convolutions

I Graph convolution ) Linear combination of shifted versions of the signal

x ⇤ h =

K�1X

k=0

hk xn�k

I Notion of shift S ) Matrix description of graph (adjacency, Laplacian)

2
6666666666664
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.
.
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· · · 1 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 1 · · ·
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3
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h ⇤ x

Sandryhaila, Moura, “Discrete Signal Processing on Graphs”, IEEE TSP, 2013
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segarra@rice.eduGraph Convolutions

I Graph convolution ) Linear combination of shifted versions of the signal

x ⇤S h =

K�1X

k=0

hk S
k
x

I Notion of shift S ) Matrix description of graph ) Sx shifts the signal x

2
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Graph convolutions
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Graph Neural Networks
segarra@rice.eduGraph Convolutions

I Graph convolution ) Linear combination of shifted versions of the signal

x ⇤S h =

K�1X

k=0

hk S
k
x = H(S)x

I Notion of shift S ) Matrix description of graph (adjacency, Laplacian)
I Linear combination of neighboring signal ) Local operation

(x;S)

S S S

+ + + +

x Sx S2x S3x

h0 h1 h2 h3

H(S)x
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Nonlinear graph signal processing
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Graph Neural Networks
segarra@rice.eduNonlinear Graph Signal Processing

I Traditional signal processing
) Best linear filter that exploits structure

min
{hk}

J(z1) = min
{hk}

J(H(S)x)

I Linear models ) Limited representation
) Nonlinear graph signal processing

I Graph perceptron ) Nonlinear processing
) Graph filter ) Pointwise nonlinearity
) Learn graph filter {hk} ) min

{hk}
J(x1)

I Basic nonlinear description of models
) Increase representation power ) Repeat

x

z1 =

K�1X

k=0

h kS
k
x

z1
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S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 13 / 112



Nonlinear graph signal processing
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Graph Neural Networks
segarra@rice.eduNonlinear Graph Signal Processing

I Traditional signal processing
) Best linear filter that exploits structure

min
{hk}

J(z1) = min
{hk}

J(H(S)x)

I Linear models ) Limited representation
) Nonlinear graph signal processing

I Graph perceptron ) Nonlinear processing
) Graph filter ) Pointwise nonlinearity
) Learn graph filter {hk} ) min

{hk}
J(x1)

I Basic nonlinear description of models
) Increase representation power ) Repeat

x
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h kS
k
x x1 = �

h
z1

iz1
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Graph convolutional networks
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Graph Neural Networks
segarra@rice.eduGraph Convolutional Neural Networks

I Cascade of L layers
) Graph convolutions with filters H = {h`}
) Pointwise nonlinearity (activation functions)

I The GCNN �(x;S, H) depends on the filters H
) Learn filter taps H from training data
) Also depends on the graph S

I Nonlinear mapping �(x;S, H)

) Exploit underlying graph structure S

) Local information
) Distributed implementation

Layer 1

Layer 2

Layer 3

x
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From GCNs to Message Passing Networks

▶ Every layer aggregates (one-hop) information and we stack several layers to
increase the size of the “local” neighborhood influencing every node’s output

Mathematical description of GNNs
Every layer aggregates (one-hop) information and we stack several layers to 
increase the size of the “local” neighborhood influencing every node’s output

Graph Convolutional Network (GCN)
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From GCNs to Message Passing Networks

▶ Every layer aggregates (one-hop) information and we stack several layers to
increase the size of the “local” neighborhood influencing every node’s output

Mathematical description of GNNs
Every layer aggregates (one-hop) information and we stack several layers to 
increase the size of the “local” neighborhood influencing every node’s output

Message-passing Neural Network (MPNN)
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A Zoo of GNNs has been developed

A whole zoo has been developed

Credit: “Graph neural networks: A review of methods and applications”
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Typical generic problems tackled with GNNs

Node classification Link prediction Graph classification
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Translate into Domain-Specific Problems

Soluble molecule or notRNA-Disease Association NetworkPPI Network

Node classification Link Prediction Graph Classification

Credit: “Graph Neural Networks and their Current Applications in Bioinformatics”, Zhang et al.

Credit: “Graph Neural Networks: A Review of Methods and Applications”, Zhou et al.

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 18 / 112



Graphs in Wireless Communications

!! !"
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Node ↔ edge

Credit: “Graph-based Deep Learning for Communication Networks: A Survey”, Jiang
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Why GNNs for Wireless Communications?

▶ Built-in scalability

⇒ We can train and test with different sizes of systems

▶ Facilitate distributed implementation

⇒ Forward-pass implementation based on local computations

▶ Locality plays a central role

⇒ My optimal decision depends on the parts of the network close to me

▶ Exploit the correct symmetries

⇒ Permutation equivariance/invariance is a natural feature of network control

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 20 / 112
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CNNs and translation invarianceWhat do we mean by “right symmetries”?

Oracle
Cat

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 21 / 112



CNNs and translation invarianceWhat do we mean by “right symmetries”?

Oracle
Cat

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 21 / 112



CNNs and translation invariance

What do we mean by “right symmetries”?

Oracle
Cat

▶ Architectures used for object recognition benefit from translation invariance

⇒ Convolutional Neural Networks

▶ Learning in the class of function to which the oracle belongs
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GNNs and permutation equivariance
What do we mean by “right symmetries”?
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GNNs and permutation equivarianceWhat do we mean by “right symmetries”?
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⇧p⇤

▶ Architectures used for power allocation benefit from permutation equivariance

⇒ Graph Neural Networks

▶ Learning in the class of function to which the oracle belongs
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Permutation equivariance vs. invariance

▶ Equivariance ⇒ fθ(ΠX;ΠAΠ⊤) = Πfθ(X;A)

▶ Invariance ⇒ fθ(ΠX;ΠAΠ⊤) = fθ(X;A)

▶ GNNs are equivariant at the level of the nodes (or edges) and invariant at the
level of the graph

⇒ Node labels permute when the input is permuted

⇒ Graph labels are impervious to permutations

▶ Achievable rates (node-level quantity) are re-indexed with permutations

⇒ but the total sum-rate (graph-level quantity) is not modified

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 23 / 112



Permutation equivariance vs. invariance

▶ Equivariance ⇒ fθ(ΠX;ΠAΠ⊤) = Πfθ(X;A)

▶ Invariance ⇒ fθ(ΠX;ΠAΠ⊤) = fθ(X;A)

▶ GNNs are equivariant at the level of the nodes (or edges) and invariant at the
level of the graph

⇒ Node labels permute when the input is permuted

⇒ Graph labels are impervious to permutations

▶ Achievable rates (node-level quantity) are re-indexed with permutations

⇒ but the total sum-rate (graph-level quantity) is not modified

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 23 / 112



Model-inspired Data-driven SolutionsA taxonomy of problems
Theoretical model

Accurate Tractable

Point-to-point channel capacity

Sum-rate in interference-limited systems

Energy consumption, hardware impairment

Molecular communications

Model-based

Data-driven

Model-inspired 
data-driven 

solutions

Credit: “Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?” Zappone et al., IEEE ToC, 2019

▶ Synergy between classical models and modern data-driven solutions
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Overview of GNN applications to Wireless Comms

▶ Very dynamic field ⇒ Many new papers being published
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Overview of GNN applications to Wireless Comms

▶ Very dynamic field ⇒ Many new papers being published

▶ Several tutorials/surveys in the area

⇒ He et al., “An overview on the application of graph neural networks in wireless

networks”, IEEE O. J. of the Comm. Soc., 2021

⇒ Hu et al., “Distributed Machine Learning for Wireless Communication Networks:

Techniques, Architectures, and Applications”, IEEE Comm. Surv. & Tut., 2021

⇒ Shen et al., “Graph neural networks for wireless communications: From theory to

practice”, IEEE Trans. Wireless Comm., 2022

⇒ Lee et al., “Graph neural networks meet wireless communications: Motivation,

applications, and future directions”, IEEE Wireless Comm., 2022
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Overview of GNN applications to Wireless Comms

▶ Very dynamic field ⇒ Many new papers being published

▶ Several tutorials/surveys in the area

⇒ Simeone, “A Very Brief Introduction to Machine Learning with Applications to

Communication Systems”, IEEE Trans. on Cognitive Comm. and Netw., 2018

⇒ Ahmad et al., “Machine Learning Meets Communication Networks: Current

Trends and Future Challenges”, IEEE Access, 2020

⇒ Ali et al., “6G White Paper on Machine Learning in Wireless Communication

Networks”, Arxiv, 2020

⇒ Jiang, “Graph-based deep learning for communication networks: A survey”,

Computer Comm., 2022

⇒ Suárez-Varela et al., “Graph Neural Networks for Communication Networks:

Context, Use Cases and Opportunities”, IEEE Network, 2023
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Overview of GNN applications to Wireless Comms

▶ Very dynamic field ⇒ Many new papers being published

▶ Several tutorials/surveys in the area

▶ A variety of problems have been tackled, including:

⇒ Power allocation and beamforming

⇒ Channel estimation

⇒ Traffic prediction

⇒ Spectrum allocation

⇒ Cooperative caching

⇒ Link scheduling

⇒ Routing
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Part II: GNNs at the Physical Layer
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Motivation

▶ Power and bandwidth are fundamental resources in communication

⇒ Key to determine the effective capacity of a wireless network

▶ Randomly varying channel and user demand

⇒ Optimal resource (re-)allocation essential for smooth functioning

▶ Algorithms must be robust against perturbations in the network

▶ We consider the optimal power allocation problem

⇒ Fast, efficient, and robust solution
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Overview

▶ Broad objective

⇒ Interference management in tactical wireless ad hoc networks

⇒ Network utility optimization under constraints

▶ Domain-inspired learning and reusable models

⇒ Combine classical algorithms with data-driven modules

⇒ Domain knowledge with neural acceleration

▶ Learning under constraints

⇒ Near-optimal solution for the unconstrained problem

⇒ Flexibility of learning to operate under multiple constraints

▶ Intelligent system leverages graph structure to allocate power

⇒ Requires centralized training but deployment can be distributed
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Optimal Power Allocation - SISO Case
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System Model

▶ Ad hoc network with m transmitter-receiver pairs

▶ Transmitter i has an associated receiver r(i) for all i ∈ {1,m}

▶ Channel State Information (CSI) matrix H(t) ∈ Rm×m

⇒ Encodes (time-varying) channel characteristics

⇒ Hji(t) represents the channel from Tx i to Rx r(j) at time t

Hji(t) = HP
jiH

F
ji(t)

⇒ where HP
ji ∝ dist(i, r(j))−k and HF

ji(t) ∼ Rayleigh(α)

▶ Node State Information (NSI) matrix X(t) ∈ Rm×d

⇒ Encodes (time-varying) node features of the Tx-Rx pair

⇒ # of packets that arrived, queue length, user priority
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Problem Description

Given the CSI matrix H(t), the NSI matrix X(t), and a network utility function
u(H(t),X(t),p(t)), determine the optimal power allocation p(t) ∈ Rm+

▶ Power constraint; Maximum power at each node ⇒ pi ≤ pmax

▶ Network utility function: sum rate across nodes

▶ Data rate at receiver i is given by (for noise variance σ2)

ci = log2

(
1 +

|Hii|2pi
σ2 +

∑
j ̸=i |Hij |2pj

)

▶ Maximize weighted sum-rate
∑m
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Classical Approach

▶ Weighted minimum mean-square error (WMMSE) [Shi et al., TSP 2011]

⇒ Reformulate the optimization problem

⇒ Implement block coordinate descent

⇒ Leads to closed-form iteration formulas

min
w,u,v

m∑

i=1

(wiei(H,u,v)− logwi)

▶ The optimal power pi can be found as v2i

▶ WMMSE is an iterative approach to solve the optimization

⇒ Update u, w, and v at each step by block coordinate descent

⇒ Stop when change between consecutive steps is small enough
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WMMSE: Update Equations

1. Initialize vi = pmax

2. repeat (for all i)

3. w
′
i = wi

4. ui =
Hiivi

σ2+
∑

j H
2
jiv

2
j

5. wi =
1

1−uiHiivi

6. vi =
αiuiHiiwi

µ+
∑

j αjH2
iju

2
jwj

7. until
∑

j logwj −
∑

j logw
′
j < ϵ

8. pi = v2i

▶ May not always converge to the global optimum

▶ Computationally expensive with high time complexity

▶ Cannot incorporate node state info

▶ Must be rerun for each instance of H

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 33 / 112



WMMSE: Update Equations

1. Initialize vi = pmax

2. repeat (for all i)

3. w
′
i = wi

4. ui =
Hiivi

σ2+
∑

j H
2
jiv

2
j

5. wi =
1

1−uiHiivi

6. vi =
αiuiHiiwi

µ+
∑

j αjH2
iju

2
jwj

7. until
∑

j logwj −
∑

j logw
′
j < ϵ

8. pi = v2i

▶ May not always converge to the global optimum

▶ Computationally expensive with high time complexity

▶ Cannot incorporate node state info

▶ Must be rerun for each instance of H
S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 33 / 112



Connectionist Approach

▶ Use neural networks to learn the optimal power allocation p(H,X)

▶ GNNs are good candidates to model this allocation

⇒ CSI H as a weighted adjacency matrix of a directed graph

⇒ NSI X as a signal supported at the nodes

▶ p(H,X) = Ψ(H,X;Θ), where Ψ is a K-layered GNN

⇒ Θ is the set of trainable weights

▶ Supervised Training: Learn by using WMMSE output as training signals

▶ Unsupervised Training: Learn using Sum-rate as the optimization objective
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REGNN

▶ Standard layered GNN architecture

zl = ReLU




Fl∑

f=0

γlfH
fzl−1


 z0 = X, Φ(H,X;γ) = zL

▶ Graph filter
∑Fl

f=0 γlfH
f combines data within Fl-hop neighborhoods

▶ Alternate local linear aggregation of data with pointwise non-linearity

▶ Learn the best weights in the local aggregation of data

Eisen-Ribeiro TSP’20
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IGCNet

▶ Compute pairwise influence (interference) of each neighbor

γkji = MLP1(Hji, Hij , xj , Hjj , β
k−1
j ) ∀i, j ∈ Ni

▶ Local non-linear aggregation of neighborhood interference

αki = CONCAT (MAXj(γji),
∑

j

γji) ∀i, j ∈ Ni

▶ Learn policy based on combination of channel with interference

βki = MLP2(αki , Hii, β
k−1
i , xi) ∀i

Shen et al., Globecom’19
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Graph-based Unfolding Scheme

▶ Iterative algorithm

⇒ Near-optimal

⇒ Time-consuming

⇒ Greedy

▶ Learnable models

⇒ MLP ignores graph structure

⇒ GNN ignores domain info.

▶ Hybrid model

⇒ Iterations as layers

⇒ Embedded graph model

⇒ Inherits greediness
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Algorithm Unrolling

▶ Iterative algorithms are long cascades of iterative steps

⇒ Good performance but slow and/or expensive

▶ Each step computes variables of interest from a set of parameters

▶ Limit number of iterations ⇒ suboptimal performance

▶ Need more efficient parameter update for faster convergence

▶ Algorithm Unrolling - learn from data Monga, Li & Eldar, 2019 arxiv, 2021 IEEE SPM)

⇒ Supervised/Un-supervised gradient feedback

▶ Iterations ⇒ layers, Parameters ⇒ neural networks

▶ More interpretable operations, easy to follow update trajectory

▶ Once trained, can be used off-the-shelf ⇒ Effective for online solutions
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Proposed Method

▶ UWMMSE update rules at arbitrary layer k

a(k) = Ψ(H;θ(k)
a ), b(k) = Ψ(H;θ

(k)
b ) (1)

u
(k)
i =

hiiv
(k−1)
i

σ2 +
∑

j h
2
ijv

(k−1)
j v

(k−1)
j

, ∀i (2)

w
(k)
i =

a
(k)
i

1− u
(k)
i hiiv

(k−1)
i

+ b
(k)
i , ∀i (3)

v
(k)
i = α

(
u
(k)
i hiiw

(k)
i∑

j h
2
jiu

(k)
j u

(k)
j w

(k)
j

)
, ∀i (4)

▶ v and u as transmitter and receiver variables

▶ w as a tunable parameter

▶ a = 1, b = 0 yields classical solution
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Block Diagram

▶ kth layer of the model is shown below

Layer 1 Layer k Layer K… …

Eq. (2) Eq. (3) Eq. (4)
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Simulation Results - 1

▶ Random geometric graph with M node pairs

▶ Path loss and Rayleigh fading

▶ Performance Comparison

⇒ Network size M = 20;

⇒ K = 4,Kmax = 100

▶ Time Comparison

Algorithm Training Test Test
time (m) sum-rate time (ms)

WMMSE - 82.94 16
Tr-WMMSE - 76.49 1.0
MLP 0.5 78.17 3.2
REGNN 15 57.92 2.5
IGCNet 5 55.30 3
UWMMSE 15 83.21 2.0

WMMSE: Shi et al, TSP’11, MLP: Sun et al. TSP’18, REGNN: Eisen-Ribeiro
TSP’20, IGCNet: Shen et al. Globecom’21,

UWMMSE: Chowdhury et al, ICASSP’21, TWC’21
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Simulation Results - 2

▶ Simulating dynamic network topologies

⇒ Nodes in motion

⇒ Insertion / Deletion of nodes

▶ Variation in Spatial Density ▶ Variation in Network Size

Chowdhury et al., ICASSP’21, TWC’21
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Optimal Power Allocation & Beamforming - MIMO
Case
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System Model

▶ Ad hoc network with M transmitter-receiver pairs (nodes)

▶ Transmitters have T antennas, receivers have R antennas

▶ Transmitter i has an associated receiver r(i) ∀ i ∈ {1,M}

▶ Channel State Information (CSI) tensor H ∈ RM×M×R×T

⇒ Encodes channel characteristics

⇒ [H]ji:: = Hji ∈ RR×T represents a MIMO channel from i to r(j)

⇒ Channel between Tx-antenna k and Rx-antenna l is given by

[Hji]lk = Hjilk = HP
jilkH

F
jilk(t)

⇒ where HP
jilk ∝ dist(i, r(j))−k for all l, k and HF

jilk ∼ Rayleigh(α)

▶ Transmitter beamformer tensor V ∈ RM×T×d

⇒ [V ]i = Vi ∈ RT×d transmits signal si ∈ Rd at node i
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Problem Description

Given the CSI tensor H, and a network utility function u(H,V ,p), determine
the optimal power allocation p and V

▶ Power Constraint: Maximum power at each node ⇒ pi ≤ Pmax

▶ Network utility: sum rate across nodes

▶ Data rate at receiver i is given by (for noise variance σ2)

ci(H,V) = log2 det
(

I+HiiViVi
⊤H⊤

ii

(
σ2I+

∑

j ̸=i
HijVjVj

⊤H⊤
ij

)−1)

where Tr
(
ViVi

⊤
)
≤ pi

▶ Maximize weighted sum-rate
∑M

i=1 αici

▶ Seeking a function Ψ(H)
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Classical Approach

▶ Weighted minimum mean-square error (WMMSE)

⇒ Reformulate the optimization problem [Shi et al., TSP 2011]

⇒ Implement block coordinate descent

⇒ Leads to closed-form iteration formulae

min
W,U ,V

M∑

i=1

(Tr(WiEi)− log detWi)

▶ U ∈ RM×R×d is the receiver beamformer tensor

▶ W ∈ RM×d×d is the node weight tensor

▶ WMMSE is an iterative approach to solve the optimization

⇒ Update U , W , and V at each step by block coordinate descent

⇒ Stop if change between consecutive steps is small enough
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Graph-based and model-informed ML solution

▶ Use neural networks to learn the optimal power allocation p(H)

▶ Graph neural networks are good candidates to model this allocation

⇒ p(H) = Ψ(H;Θ), where Ψ is an K-layered GNN

⇒ Θ is the set of trainable weights

▶ Built-in scalability

⇒ We can train and test with different sizes of systems

▶ Exploit the right symmetries

⇒ Permutation equivariance is a natural feature for power allocation

▶ Model-informed solution via algorithm unfolding

▶ Layers in a neural architecture inspired by iterations of WMMSE

⇒ More interpretable operations

⇒ Easy to fall back into classical solution
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Proposed Method

▶ UWMMSE update rules at arbitrary layer k

a(k) = Ψ(H̄; θa), b(k) = Ψ(H̄; θb), (2)

U
(k)
i =

(∑

j ̸=i
HijV

(k−1)
j V

(k−1)⊤
j H⊤

ij+σ2I

)−1

HiiV
(k−1)
i ∀i (3)

W
(k)
i =[a(k)]i

(
I−U

(k)⊤
i HiiV

(k−1)
j

)−1
+ [b(k)]i ∀i (4)

V
(k)
i =β

((∑

j ̸=i
H⊤
ijU

(k)
j W

(k)
j U

(k)⊤
j Hij

)−1

H⊤
iiU

(k)
i W

(k)
i

)
∀i (5)

▶ β is a clipper to enforce power constraint
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Tensor Reduction

▶ GNN Ψ requires CSI between i and r(j) to be a scalar

▶ Φ(H;ω) : RM×M×R×T → RM×M×1 where ω ∈ RRT

⇒ Single-layered 1× 1 depth-wise conv with shared weights

▶ Learnable weighted combination of RT coefficients at each node

H̄ = Φ(H;ω) (6)
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Block Diagram

▶ kth layer of the model is shown below
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Complexity Analysis

▶ Per-layer complexity of UWMMSE is O(M2), same as WMMSE

▶ Linear layer Φ has RT + 1 parameters,

⇒ Shared filter kernel allows for O(M2) reduction

▶ Each of the two 2-layered GCNs Ψ, have 6h+ 2 trainable weights θ

⇒ h is the size of the hidden layer (typically ≤ 10 )

▶ Number of trainable weights is therefore 12h+RT + 5

⇒ Independent of the number of users M

▶ Very few trainable weights

⇒ Makes model easy to train

⇒ Likely to generalize
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Simulation Results - 1

▶ Random geometric graph with M node pairs

▶ Path loss & fading: Rayeligh, Rician, Network size M = 20

▶ Performance Comparison ▶ Time Comparison

Algorithm Training Test
time (min) time (sec)

WMMSE - 1.305
Tr-WMMSE - 0.047
IAIDNN ∼ 10 0.64
GCN-WMMSE ∼ 21 1.365
UWMMSE ∼ 35 0.054

WMMSE: Shi et al, TSP’11, IAIDNN: Hu et al. TWC’21, GCN-WMMSE: Schynol-Pesavento, JSAC’23,

UWMMSE: Chowdhury et al, MILCOM’21, Asilomar’23, TWC’23
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Simulation Results -2

▶ Performance Comparison
▶ Generalization performance

⇒ Over SINR

Chowdhury et al, MILCOM’21, TWC’23, Asilomar’23

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 53 / 112



Optimal Power Allocation - Federated Learning
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Power allocation for wireless FL

Critical step: upload local updates

How much transmit power should local
workers use?
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Power allocation for wireless FL

Compared to the just-discussed SISO & MISO power allocation cases ...

FL case is more challenging:
▶ Additional non-convex constraints on

FL-specific requirements, e.g., delay and
energy

▶ Ultimate goal of improving FL
performance being indirect to the
communication objective
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Power allocation for wireless FL

Compared to the just-discussed SISO & MISO power allocation cases ...

FL case is more challenging:
▶ Additional non-convex constraints on

FL-specific requirements, e.g., delay and
energy

⇒ Primal-dual (PD) algorithm enhanced by
graph learning

▶ Ultimate goal of improving FL
performance being indirect to the
communication objective

⇒ Local data heterogeneity
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Problem formulation

Determine the power allocation policy p⋆ : RL×L→RL that solves the follow-
ing optimization problem1, subject to bounds on transmission rate, energy
efficiency, and power

p⋆ = argmax
p

g (EH∼H [PSR(p,H)]) ,

s.t. r0,i ≤ EH∼H [Ri(p,H) | pi > 0] ,

e0,i ≤ EH∼H

[
Ri(p,H)

pi + Pc,i
| pi > 0

]
,∀i,

p = p(H)∈ [0, Pmax], ∀H,

1PSR: Packet success rate, PSR = exp(−m/SINR)
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Problem formulation

Parameterize the power policy with
learnable parameters Θ, st
pψ(H)=Ψ(H;Θ), and restate P1 ...

p⋆= argmax
p

g (EH∼H [PSR(p,H)])

s.t. r0,i ≤ EH∼H [Ri(p,H) | pi > 0],

e0,i ≤ EH∼H

[
Ri(p,H)

pi + Pc,i
| pi > 0

]
,∀ i,

p = p(H)∈ [0, Pmax], ∀ H,

...in a manner that is amenable to a
Primal-Dual (PD) solution:

P ⋆
ψ = max

Θ,y,r,e
g(y), (P2)

s.t. y ≤ E[ PSR(pψ,H) ],

ri ≤ E
[
Ri(pψ,H) | pψi>0

]
,

ei ≤ E
[
Ri(pψ,H)

pψi + Pc

∣∣∣ pψi>0

]
,

ri ∈ [r0,i,+∞),

ei ∈ [e0,i,+∞), ∀ i,
pψ = pψ(H)∈ [0, Pmax], ∀H.
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PD learning

▶ (P1) has a zero duality gap.

▶ (P2)’s duality gap depends on the expressiveness of Ψ.

The Lagrangian of (P2)

Lψ(Θ,y, r, e,λy,λr,λe) = g(y) + λ⊤
y (E[fy]− y) + λ⊤

r (Ec[fr]− r) + λ⊤
e (Ec[fe]− e)

motivates iterative gradient updates to:

1. Learnable parameters Θ;

2. Primal variables y, r, and e;

3. Dual variables λy, λr, and λe.

Choosing GCN as Ψ constitutes our primal-dual graph convolutional (PDG) power
network.
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Proposed solution (before FL)
Two-stage solution with two separate learning models.

1. Before FL, train a power allocation policy model (see below).

2. During FL, apply the policy model to upload local FL models in each FL
iteration that updates the global FL model.

!(H; Θ)

Pm 1 H
H

Input Output

…

φ1(·)

…d1 …dt

Sigmoid
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S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 59 / 112



Proposed solution (during FL)

FL system: FL pipeline with power allocation policy:

probabilities 
of success y

Broadcast 
global model

Allocate 
transmit power

Upload local 
models 

Aggregate 
global model

Converged?

Finish

No

Φ(wi)

FL model

Local dataset Xi

…

The power model, 
trained within the 
PDG framework, is 
employed but not
updated during FL. 

The local FL models are trained by each 
worker using their local datasets in each 
FL iteration. 

!(H; Θ)
Pm 1 H

H

Input Output

p

…

Power model
…

Train local models

Yes
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PD learning curves for the power policy

Learning curves2 of PDG demonstrate convergence to
(a) delay constraint, (b) energy constraint, and (c) objective PSR.

(a) (b) (c)

2Constraint constants r0 and e0 are annotated as dashed lines in (a) and (b). Larger markers
in (c) are where all workers satisfy both constraints.
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Communication proxy

Performance comparison (system-level transmission error rate) of PDG to other

power allocation methods under different network configs:

(a) Interference strength (b) Max power value (c) Network size

PDG ensures more accurate transmissions than the topology- agnostic learning-based

PDM and other rule-based power methods.
Orth: Chen et al., TWC’20
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FL performance on I.I.D. data
Tests on FL benckmark tasks: (a) NLP: IMDb
sentiment classification, (b) MNIST digit classi-
fication, and (c) regresison: Air quality predic-
tion.

Figures show global FL validation errors vs com-
pleted FL iterations.

PDG consistently results in the best FL
performance, close to ideal.

(a)

(b) (c)
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Non-I.I.D. case

Local datasets may have different types, degrees, or patterns of random noise specific to

the device or local environment.

(a) Heterogeneous AWGN. Bars denote corresponding

worker weights that reflect local data quality.

(b) Skewed label histograms drawn from a Dirichlet

distribution.
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0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
N
IS

T 
Pr
ed

ic
tio

n 
E
rr
or
 R
at
e

Rand Orth PDM PDG Ideal FL

(c) Federated MNIST classification performance
averaged across 5 random realizations. Results are
shown for both Gaussian (noisy data) and Dirichlet

(imbalanced labels) non-i.i.d. scenarios.

Boning Li et al. ICASSP’22, TWC’23
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Part III: Graph-based ML for Wireless Networking
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Introduction: wireless multihop networks

▶ User devices self-organization

▶ Infrastructure-less communications

⇒ Military and disaster relief

▶ Emerging applications

⇒ wireless backhaul, satellite constellation

⇒ Traffic offloading (D2D, IoT)
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Fundamental wireless networking tasks

▶ Routing: send packets from source(s) to destination(s) through relay nodes

⇒ Path finding: 1-to-1 (unicast), 1-to-many: multi-cast, broadcast

⇒ Orchestration: cluster head election, virtual backbone establishment
▶ Link scheduling: decide which links to be activated in each time slot

⇒ MaxWeight scheduling, carrier sensing multiple access (CSMA)
▶ Combinatorial & discrete nature
▶ Distributed solutions are preferred (our focus)

▶ Performance analysis: latency, jitter, throughput, packet drops . . .
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Why wireless networking is so challenging?

▶ Model: queueing networks subject to conflict constraints → no analytical model

▶ Instantaneous link rates fluctuate due to channel fading

▶ Changing network topology due to mobility

▶ Link capacity coupled with routing & scheduling decisions and input flow rates
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GNNs for networking: opportunities and challenges

Algorithms
or protocols 

Graph 
model SolutionGNNGraph 

model Solution

GNNs Algorithms

Transparency, interpretability explainability poor good

Theoretical bound & guarantees poor good

Natural aspect of networks opportunities limited

Representation of network structure yes limited

Learning from graph-structured data yes no

Inductive bias: permutation equivariance yes yes

Engineering aspect of networks challenges easy

Formulate networking tasks as link prediction,
node classification, graph embedding

challenging –

Domain knowledge: observe rules, constraints hard easy

Discrete decision-making hard easy

Data labeling for supervised learning hard –

Overall limitation functionality optimality
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Part III Overview

Algorithms
or protocols 

Graph 
model Solution

GNNGraph 
model Solution

GNN Algorithms
or protocols 

Graph 
model Solution

Graph-based machine learning for

▶ Max-Weight link scheduling

▶ Repetitive combinatorial optimization

▶ Conflict-aware packet routing

▶ Rapid network simulation

▶ Summary & future applications
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Let’s start with a particular networking task
Link Scheduling with Graph Neural Networks 34

3Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, ”Distributed Scheduling Using Graph Neural
Networks,” IEEE ICASSP 2021, pp. 4720-4724

4Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, ”Link Scheduling Using Graph Neural
Networks,” in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023
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Link scheduling

Decide when and which links to be activated

Medium Access Control (MAC)

▶ Synchronized, time-slotted system

▶ Orthogonal multiple access
▶ A resource block is exclusively assigned to an

active link
▶ In spatial, temporal, frequency, or code

domains

▶ Bidirectional link → Undirected edge
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Link scheduling: graph modeling

Conflict graph G = (V, E)
▶ Vertex v ∈ V → wireless link

▶ Edge e ∈ E → conflict relationship
between two wireless links that

⇒ share the same device (interface)

⇒ interfere each other if both activated

Vertex weights u ∈ R|V|
+ = [u(v)|v ∈ V]

▶ u(v): utility of activating wireless link v

Utility function u : V → R+

▶ E.g., u(v) = q(v)l(v), u(v) = min{q(v), l(v)} for throughput maximization

⇒ Queue length q(v), link rate l(v)

⇒ Vector form u = q⊙ l, uv = u(v),qv = q(v), lv = l(v)
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Max-Weight scheduling: MWIS formulation

Maximum weighted independent set (MWIS)

Consider a conflict graph G = (V, E), where V
and E describe all the links and their conflict
relationships in the wireless network, respec-
tively, and a utility function u : V → R+.
The optimal schedule is given by

v∗ = argmax
v⊆{0,1}|V|

v⊤u (7a)

s.t. vi + vj ≤ 1 , ∀(i, j) ∈ E . (7b)

▶ MWIS problem is NP-hard

▶ Fast & distributed heuristics in practice
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Distributed local greedy solver (LGS), O(log |V|)
LGS5 denoted as function v̂Greedy = h(G,u), inspired by Ruby’s algorithm6

▶ All links initialized as undecided v = −1

▶ Link i is scheduled (vi = 1) if its utility exceeds all neighbors

u(i) > max
j∈N (i)

u(j)

▶ Link i is muted (vi = 0) if one of its neighbors is scheduled

▶ Undecided nodes enter next iteration until all nodes are decided

5C. Joo and N. B. Shroff, “Local greedy approximation for scheduling in multihop wireless networks,”
IEEE Trans. on Mobile Computing, vol. 11, no. 3, pp. 414–426, 2012

6M. Luby. ”A simple parallel algorithm for the maximal independent set problem.” SIAM journal on
computing 15.4 (1986): 1036-1053.
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Why not just let a GNN directly output solution?
Graph neural networks (GNNs)

▶ Distributed & fast execution

▶ Generalize to different topologies

▶ Unable to encode relational constraints in
COPs, e.g., vi + vj ≤ 1 , ∀(vi, vj) ∈ E .

Graph convolutional layer (local form)

Example: MWIS problem on a regular graph, where every node has identical weight
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Graph convolutional layer (local form)

GNN
Distributed 
Algorithm
(Heuristic)

Identical input à identical prediction Tie-breaking rules

Constraint violations

Example: MWIS problem on a regular graph, where every node has identical weight

S. Segarra, A. Swami, Z. Zhao Graph-based ML for Wireless Comms. May 5th, 2024 76 / 112



GCN-enhanced local greedy solver (GCN-LGS)

Local Greedy Output

2

7

8

Input
Graph Convolutional Network

10

5

2

7

8

3

GCN-LGS pipeline

Node embedding

Conflict graph

Topology-agnostic utilities Topology-aware utilities Independent set 
(solution)

Baseline method bypass the GCN

fully-distributed implementation
Trainable weights

Local Topology
Neighbor set node degreeOn every link

Algorithmic heuristic serve as 
Inductive Bias that ensures 
ü Correctness
ü Fail-safety
ü Self-organizing capability
ü Efficient machine learning

activation

Function notations:
LGS: v̂Greedy = h(G,u)
GCN-LGS: v̂ = h(G, z⊙u)
GCN: z = ΨG(S;ω),
ω: trainable parameters
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GCN Training: customized deterministic policy gradient7

Why reinforcement learning?

▶ Avoid data labeling –
MWIS problem is
NP-hard

▶ Treats non-differentiable
LGS as part of the
environment

Gradient proxy

ω∗ = argmax
ω

J(ω) (8a)

s.t. J(ω) = E(G,S,u)∼Ω [γ(G,u, z)] , (8b)

γ(G,u, z) = v̂⊤u
v̂⊤
Greedyu

, (8c)

v̂Greedy = h(G,u) , (8d)

v̂ = h(G, z⊙ u) , (8e)

z = ΨG(S;ω) . (8f)

▶ Draw random network state (G,S,u) ∼ Ω

▶ ∇̂J(ω) = γ(G,u, z)∇ΨG(S;ω)v̂, gradient

▶ Weight update ω = ω + α∇̂J(ω), learning rate

7Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, ”Link Scheduling Using Graph Neural
Networks,” in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023
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GCN Training: customized deterministic policy gradient7

Why reinforcement learning?

▶ Avoid data labeling –
MWIS problem is
NP-hard

▶ Treats non-differentiable
LGS as part of the
environment

0

0

0

Gradient proxy

ω∗ = argmax
ω

J(ω) (8a)

s.t. J(ω) = E(G,S,u)∼Ω [γ(G,u, z)] , (8b)
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7Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, ”Link Scheduling Using Graph Neural

Networks,” in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023
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Numerical results: throughput maximization8

Key Takeaways for GCN-LGS

▶ Close nearly half optimality gap

▶ Reusable GCN model

⇒ Inner loop of LGS: GCN-LGS-it

⇒ Centralized rollout search (CRS)

▶ Lightweight GCN: 2 trainable weights

▶ Failsafe: can fallback to vanilla LGS for
basic functionality if GCN went crazy

▶ Low complexity: O(log |V|)

92.2% Optimal 
100%

95.7%

Greedy baseline
[Joo12]

Our distributed 
schedulers

Our centralized 
schedulers

99.1%Median 
throughputs

[Khalil17] 
Centralized 
scheduler 

0.5

▶ 100 nodes, 40 ∼ 60 links

▶ Utility function u(v) = min [r(v), q(v)]

▶ Flooding traffic

▶ 100 graphs × 10 instances × 200 time steps

8Z. Zhao, G. Verma, C. Rao, A. Swami and S. Segarra, ”Link Scheduling Using Graph Neural
Networks,” in IEEE Trans. on Wireless Comms., vol. 22, no. 6, pp. 3997-4012, June 2023
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How to generalize GCN-LGS to broader networking tasks?

Graph-based deterministic policy gradient
(GDPG-Twin) for
repetitive combinatorial optimization problems
(R-COPs)9

9Z. Zhao, A. Swami, S. Segarra, ”Graph-based Deterministic Policy Gradient for Repetitive
Combinatorial Optimization Problems,” ICLR 2023
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Combinatorial Optimization Problem (COP)

Typical formulation

Constraints defined on Graph, 
Hypergraph, or Simplicial Complex

s.t. Discrete constraint on nodes or edges

COP

Characters

▶ Input: a graph with cost vector c

▶ Decision variables x

⇒ Discrete (integer) constraints

⇒ Relational constraints

▶ Minimize total cost

▶ Non-convex, often NP-hard!

Maximum Weighted Independent Set

v∗ = argmax
v⊆{0,1}|V|

u⊤v (9a)

s.t. vi + vj ≤ 1 , ∀(i, j) ∈ E . (9b)

Source: Wikipedia – Maximal independent set
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Repetitive Combinatorial Optimization Problem (R-COP)

…… …

▶ Graph-based Markov decision process

⇒ Network state as a weighted graph (V(t), E(t), c(t))
⇒ Network state of t+ 1 depends on decisions x(t)

⇒ Decision x(t) found by solving a COP on (V(t), E(t), c(t))
⇒ Cost vector c(t) changes rapidly compared to topology (V(t), E(t))

▶ Many applications

▶ Practical restrictions: limited runtime and/or distributed execution
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▶ Many applications
Routing & Scheduling in 
communication networks

Multi-object tracking in 
computer vision

Vehicle routing problems in 
distribution networks

Resource allocation & job scheduling in 
cloud, frog, edge computing

▶ Practical restrictions: limited runtime and/or distributed execution
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Restrictions on runtime and distributed execution

… …

milliseconds milliseconds

e.g., COP instances coming at data or video frame rates 
in wireless link scheduling or computer vision

Source: (D. Arı , M. Çıbuk and F. Ağgün , 2017)

▶ Centralized COP solver

⇒ High communication overhead to collect full network state to a server

⇒ High computational complexity, scale up quickly by network size

⇒ Single point of failure

▶ Distributed COP solver for scalability and robustness

⇒ Fast & robust execution using only neighborhood information (exchange)
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GDPG-Twin: a general actor-critic framework for R-COP

GNN Algorithmic
Heuristic

Distributed execution,
Dynamic topology

Non-differentiable

GNN

Learning component, 
exploit graph structure Constraint guarantee

Discrete decisions

Element-wise 
expected outcomes

(Actor)

(Twin)

Network state
Intermediate action

Gradient

Objective function: a known linear combination 
of element-wise expected outcomes!

Critic network

Actor-critic framework

Gradient

▶ Actor GNN exploits graph structure

▶ Algorithmic heuristic guarantee correctness (relational constraints)

▶ Twin GNN bridges the non-differentiability gap of algorithmic heuristic
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Independent R-COP

… …
Actor
(GNN)

Heuristic
(non-differentiable)

Twin
(GNN)

Parameterized

Underlying 
topology

Policy parameters

Instantaneous 
network state

Gradient

▶ Goal: reduce optimality gap with minimal overhead

⇒ Optimize each COP instance individually, ignore inter-state dependency

▶ GNN encodes the underlying topology, embeddings reused for many time steps

▶ Expected element-wise outcome ô ≈ o = E(c⊙ x)

▶ Gradient on intermediate action ∇Z1
⊤ô ≈ ∇ZE(c⊤x)
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Independent R-MWIS

Benchmark: ZOO (zeroth-order optimization)

Approximation ratio Execution local complexity Training complexity

3-layer
GCNN

LGS
[Joo 2012]

GDPG-Twin ZOO

Baseline

Enhanced

(Larger is better)

Optimal
Baseline

Enhanced 
w/ high reusing

Baseline

▶ Tested on 500 random graphs from Erdős–Rényi model

▶ Baseline: LGS10, Benchmark: Zeroth-order optimization (ZOO)

10
C. Joo and N. B. Shroff, ”Local Greedy Approximation for Scheduling in Multihop Wireless Networks,” in IEEE

Trans. on Mobile Computing, vol. 11, no. 3, pp. 414-426, March 2012.
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Generalize to more Independent R-COPs

Minimum Weighted Dominating Set Node Weighted Steiner Tree Minimum Weighted Connected 
Dominating Set

GCNN Heuristic GCNN Heuristic GCNN Heuristic

Source: 
J. Abernethy, 
CS 3510

Source: 
(M. Fujita, T. Kimura,
& K. Jin’no, 2016)

Source: 
(G.V. Shaamili Varsa, 

D. Sridharan, 2019)

Centralized Greedy-MWDS Distributed K-SPH-NWST Distributed Greedy-
MWCDS

Baseline Baseline

(Smaller is better) (Smaller is better)

(Smaller is better) Baseline

Centralized Greedy
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R-COP in graph-based Markov decision process

… …

Actor
(GNN)

Heuristic
(non-differentiable)

Twin
(GNN)

GradientInstantaneous 
network state

▶ Goal: optimize long-term system-level objective

⇒ Inter-state dependency MUST be considered

▶ GNN encodes network state (V(t), E(t),S(t)) into cost vector c(t) in each time step

⇒ Consider future element-wise rewards

▶ Expected element-wise outcome ô(t) ≈ o(t) = E [r(t) + γô(t+ 1)]

▶ Gradient on intermediate action ∇c(t)fobj (ô(t)), fobj is a linear function
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Delay-oriented link scheduling

Policy 1

ω∗ = argmax
ω

Ei∈V,t≤T [qi(t)] (10a)

s.t. q(t+ 1) = q(t) + a(t)− x(t)⊙min(l(t),q(t)) , (10b)

x(t) = h(V, E ,q(t), l(t),a(t);ω) . (10c)

l(t) link rates, q(t) queue lengths, a(t) new packet arrivals

▶ The ML pipeline is supposed to improve delay on centralized networks

▶ GDPG-Twin can do the same job as ad-hoc RL schemea at 1
5 computational cost

aZ. Zhao, G. Verma, A. Swami and S. Segarra, ”Delay-Oriented Distributed Scheduling Using Graph Neural
Networks,” IEEE ICASSP 2022, pp. 8902-8906
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Recap on GDPG-Twin for R-COPs
▶ Single-agent reinforcement learning for: scalar action & reward, state in regular domain

ActionReward

State

Environment

▶ GDPG-Twin as a general reinforcement learning framework for distributed networks

⇒ High-dimensional parallel action, reward, & state in irregular (graph) domain

⇒ Generalize to dynamic graphs thanks to shared core model in GNN

⇒ Follow engineered rules, leveraging domain knowledge
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State

Environment
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5
1.5

1.5

1.5
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1
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2

5
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4
2

5

Environment

Action

Reward

State

Network with dynamic membership & topology
as a meta-agent

GNN
Actor

GNN
Twin

Algorithms
or protocols 

obj
func

Critic

MSE

Improve Combinatorics
MWIS: link scheduling
MWDS: network clustering
NWST: multicast routing
MWCDS: virtual backbone

▶ GDPG-Twin as a general reinforcement learning framework for distributed networks

⇒ High-dimensional parallel action, reward, & state in irregular (graph) domain

⇒ Generalize to dynamic graphs thanks to shared core model in GNN

⇒ Follow engineered rules, leveraging domain knowledge
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GNN
Actor

GNN
Twin

Algorithms
or protocols 

obj
func

Critic

MSE

Other than combinatorics, 
what else can be done here?

Encode Network Context into Backpressure Routingabc

aZ. Zhao, B. Radojicic, G. Verma, A. Swami and S. Segarra, ”Delay-Aware Backpressure Routing Using
Graph Neural Networks,” IEEE ICASSP 2023, pp. 1-5

bZ. Zhao, G. Verma, A. Swami and S. Segarra, ”Enhanced Backpressure Routing Using Wireless Link
Features,” IEEE CAMSAP, 2023, pp. 271-275

cZ. Zhao, B. Radojičić, G. Verma, A. Swami, S. Segarra, Biased Backpressure Routing Using Link Features
and Graph Neural Networks, submitted to IEEE Trans. on Machine Learning In Comms. and Netw.
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From hop distance to conflict-aware shortest path

Shortest hop count bias 
promotes the orange 
route, of which both 
links have 8 conflicting 
neighbors, thus less 
likely being scheduled 
(link duty cycle = 1/9)

Shortest path bias based 
on link duty cycle 
promotes the green 
route, of which links 
have fewer conflicting 
neighbors, thus more 
likely to be scheduled 
(higher link duty cycle)

Assume every link has an equal 
chance of being scheduled

Insight: In wireless networks, links should not

be treated equally since they introduce different

latencies depending on local conflict topology.

Graph modeling

▶ Connectivity graph Gn = (V, E)
▶ Conflict graph Gc = (E , C)

Per-hop distance δe, e ∈ E
▶ Shortest hop distance, δe = 1

▶ With link duty cycle 0 < xe < 1

⇒ Definition 1: δe = 1/xe

⇒ Definition 2: δe =
l̄

xele

▶ Link duty cycle predicted by GCNN
x = ΨGc(S;ω)

Graph convolutional layer (local form)
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Conflict-aware shortest path for Backpressure routing11

12

13

23

24

35

34 45
56

46

GNN

APSP

Per-destination queues

Conflict graph

Connectivity graph

Network state including QSI

Optimal scaling

Edge weights

Shortest path 
biases

Link duty cycles

Link schedule

Network processes
(Transmissions, exogenous packet arrivals …)

Biased Backpressure Routing

Capacity 
allocation

MaxWeight 
Scheduling

MSE

Adam 
Optimizer

Time step-wise operations

Calculate 
optimal commodity

& backpressure

Training

Routing & 
scheduling 
decisions

Using shortest hop counts as bias

GCNN-enhanced SP-BP 
achieves best latency 
performance

SJB: Sojourn time of all packets in the queue [L. Hai, TVT, 2018]
HOL: Sojourn time of head-of-line packet in the queue [B. Ji, ToN, 2012]
EDR: Enhanced Dynamic Routing [M. Neely, JSAC, 2005]

Do NOT use shortest path bias

11
Z. Zhao, B. Radojičić, G. Verma, A. Swami, S. Segarra, Biased Backpressure Routing Using Link Features and Graph

Neural Networks, submitted to IEEE Trans. on Machine Learning In Comms. and Netw., under review.
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Network with dynamic membership & topology
as a meta-agent

GNN
Actor

GNN
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Algorithms
or protocols 
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func

Critic

MSE

Improve combinatorics
Network context awareness

What else can it predict?
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New approach to network simulation & optimization

Network Digital Twin for Fast KPI prediction12

Credit: Boning Li

12B. Li, T. Efimov, A. Kumar, J. Cortes, G. Verma, A. Swami, and S. Segarra. ”Learnable Digital Twin
for Efficient Wireless Network Evaluation.” In IEEE MILCOM, pp. 661-666., 2023.
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Introduction of network simulators

Topology

Routing

Traffic

Delay

Jitter

Packet drops

Throughput

Routing on/off time = (ton, toff) 
ton ~ Exp(1/τon), where
τon ~ Unif{1,10,20}

Topology Traffic

Example inputs: NSFNet (14 nodes, 42 links, 10 flows/paths)

▶ Each flow corresponds to a set of KPIs (key performance indicators)

⇒ Guide the design, evaluation, and optimization of networks & protocols

▶ Network simulator emulates every step in the network protocols and wireless channels

⇒ Very slow, difficult to scale up
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What network digital twin can do?

Topology

Traffic matrix

Routing scheme

Network 
configuration

Performance metrics
(KPIs)

Delay

Jitter

Throughput

Drops

Topology

Traffic matrix

Routing scheme

Digital twin
(graph learning)

Delay

Jitter

Throughput

Drops

▶ Fast KPI prediction and differentiable process

▶ Digital twin of network simulators

⇒ Predict KPIs rapidly (fast execution)

⇒ Enable iterative optimization (fast execution)

⇒ Training machine learning-based network solutions (differentiability)
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Message-passing architecture of GNNs (PLAN-Net)
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PLAN-Net (Path, Link, And Node)

▶ PLAN-Net improves existing RouteNet13 for wired networks

▶ Leverage node embeddings to distinguish different interference topologies

13K. Rusek, et al., “RouteNet: Leveraging graph neural networks for network modeling and
optimization in SDN,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2260–2270, 2020.
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Training and evaluation

▶ Supervised training, using ns-3 single-run output as training labels

▶ Performance evaluated by mean absolute error (MAE)

Delay #0
…

Throughput #0

Topology
Traffic

Routing
Input 

instance
Ground-truth KPIs

Run #0

Compute loss & 
perform back-
propagation

Note: Simulator-reproduced 
methods do not have the 
accurate ground-truth path 
information

ns-3+
(avg)

(avg)
ns-3++

Delay #1
…

Throughput #1
Run #1

Simulator-reproduced KPIs 

Digital Twin
(PLAN-Net)

Delay
…

Throughput

Predicted KPIs

Delay #2
…

Throughput #2
Run #2

Delay #3
…

Throughput #3
Run #3

Ground-
truth path 

information

(Run #0)
Routing table

fmse(KPItrue , KPIpred) 
true

pred

ns-3 (test)
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Numerical results: wireless networks of grid topology

▶ Alter transmit power to test for
different levels of interference

▶ PLAN-Net achieves the lowest MAE

▶ Generalize to different network
topologies

Ptx = 12 Ptx = 16 (default) Ptx = 20
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Numerical results: regular vs perturbed grid topologies

Regular grid

… …

Perturbed grids

Key take-aways

▶ PLAN-Net is more accurate than a single-run of ns-3

▶ PLAN-Net can generalize to random perturbation of network topology

▶ PLAN-Net runs 1000x faster than ns-3, e.g., 100s → 0.01-0.1 s
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Summary & future work
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Node/edge-wise return
Network KPIs

▶ Graph-based ML: permutation invariant, distributed (scalable), no data labeling

⇒ Networks are dynamic and parallel & networking tasks are often discrete

▶ Hybrid ML pipelines → graph learning + domain knowledge = performance boost

▶ Digital twin → fast KPI prediction and action critic = new optimization tools
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Potential applications of graph-based ML in large-scale networked systems

Ad-hoc & sensor networks5G/6G networks

Operations Research

Smart traffic light control system

Cloud, fog, edge computing

Source: e-ziggurat.com Source: caliper.com

Source: zhongyuanzhao.com
Source: smartcitystyle.com

[SAA Hakeem, HH Hussein, HW Kim, 2022]

Edge computing & AI in wireless multihop networks14

14Z. Zhao, J. Perazzone, G. Verma and S. Segarra, ”Congestion-Aware Distributed Task Offloading in
Wireless Multi-Hop Networks Using Graph Neural Networks,” IEEE ICASSP, 2024, pp. 8951-8955.
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Congestion-aware distributed task offloading
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Congestion mitigation in distributed task offloading15

Barabási–Albert model

Clients

Servers

Relay

Tasks

If a task is congested, its execution latency > 1000 time slots

Local: all clients can execute their own tasks without congestion
GNN: some tasks offloaded to remote servers without congestion, reducing 
average execution latency compared to the local policy
Baseline: 4%~15% congestion ratio, and high average execution latency (500)

Exemplary random test case 
on a network of 20 nodes

15Z. Zhao, J. Perazzone, G. Verma and S. Segarra, ”Congestion-Aware Distributed Task Offloading in
Wireless Multi-Hop Networks Using Graph Neural Networks,” IEEE ICASSP, 2024, pp. 8951-8955.
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Conclusions and Future Directions
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Going back to our Key Takeaways

▶ What are graph neural networks (GNNs)?

▶ Why are GNNs well suited to tackle problems in wireless communications?

▶ How have GNNs been applied to specific problems?

▶ What are open problems/challenges to which you can contribute?
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Going back to our Key Takeaways

▶ Class of parametric, layered, non-linear functions that incorporate information
both from features and graph structure

▶ Scalability, distributed implementation, and permutation equivariance/invariance

▶ We covered power allocation & beamforming, link scheduling, and routing
problems

▶ Hopefully, the technical discussion have triggered some thoughts. We will also
discuss open directions now
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Open and Future Directions

▶ The ‘easy’ one ⇒ Applications to other problems in wireless (and beyond)

▶ Implementation in real wireless networks

⇒ Fading, inexact channel info, packet drops, adversarial/malfunctioning nodes

⇒ Specific protocols for message passing implementation
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Working with Real Data
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Open and Future Directions

▶ The ‘easy’ one ⇒ Applications to other problems in wireless (and beyond)

▶ Implementation in real wireless networks

⇒ Fading, inexact channel info, packet drops, adversarial/malfunctioning nodes

⇒ Specific protocols for message passing implementation

▶ Efficient distributed training

⇒ New challenges in distributed optimization

⇒ Key for implementation in real systems

▶ Combination with generative AI

⇒ Data augmentation and large training datasets

▶ Privacy-preserving message passing in GNNs

▶ Uncertainty and implementation in critical infrastructure
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Thank you
Santiago Segarra (segarra@rice.edu)

Ananthram Swami (ananthram.swami.civ@army.mil)

Zhongyuan Zhao (zhongyuan.zhao@rice.edu)
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