

Paper ID: 3944

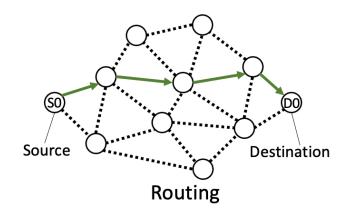
Delay-aware backpressure routing using Graph Neural Networks

Zhongyuan Zhao*, Bojan Radojičić[§], Gunjan Verma[†], Ananthram Swami[†], Santiago Segarra*

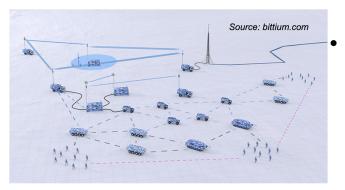
*Rice University, USA

§University of Novi Sad, Serbia

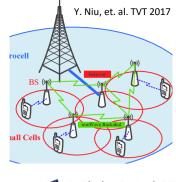
+ US Army's DEVCOM Army Research Laboratory, USA

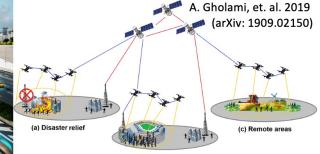

2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Rhodes Island, Greece, June 4-10, 2023

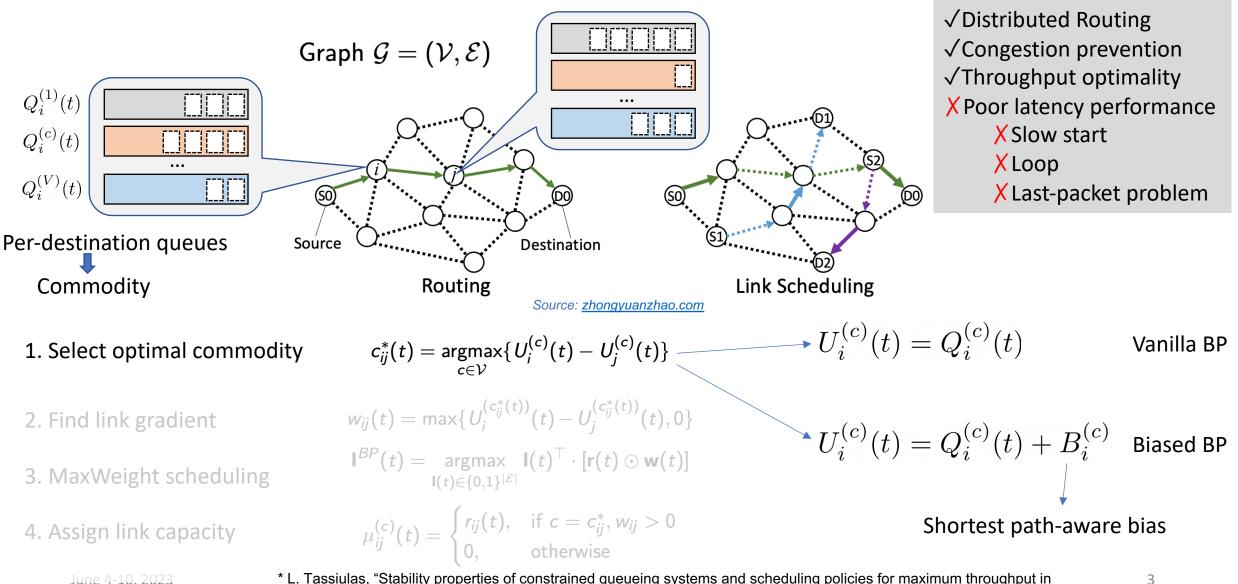


Backpressure (BP) Routing for Multihop Wireless Networks

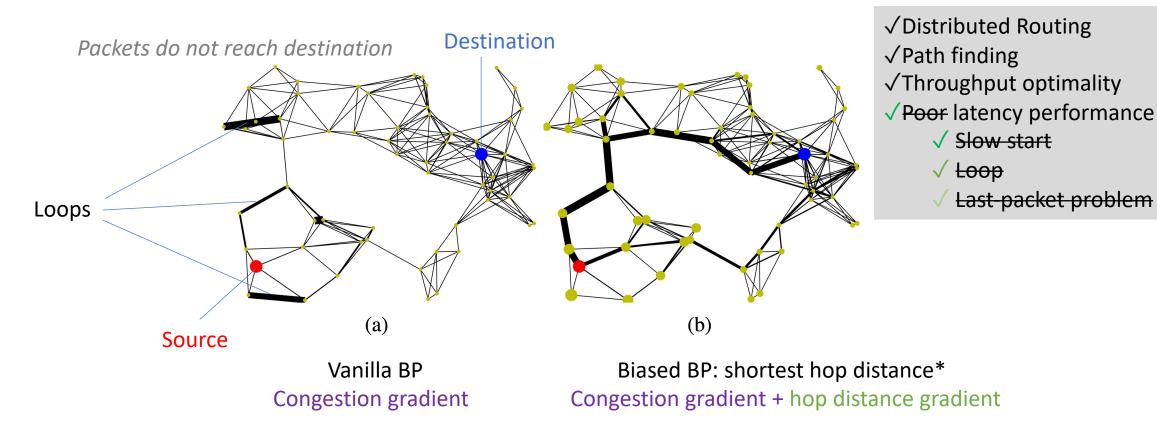

- Wireless Ad-hoc Networks
 - Military
 - Disaster relief
- Wireless Sensor Networks



- orks Wireless Backhaul Networks
 - Small cell backhaul
 - Drone/CubSat-assisted 5G/6G
 - Starlink
 - Rural/Agriculture broadband
 - Machine-to-Machine Comm.
 - Internet-of-Things (IoT)
 - Connected vehicles
 - Drone fleet / Robotic Swarm
 - Smart factory



Backpressure Routing*



June 4-10, 2023 Paper ID: 3944, ICASSP 2023

* L. Tassiulas, "Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks," IEEE Trans. on Automatic Control, vol. 31, no. 12, 1992.

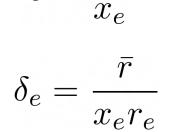
Vanilla v.s. biased BP routing

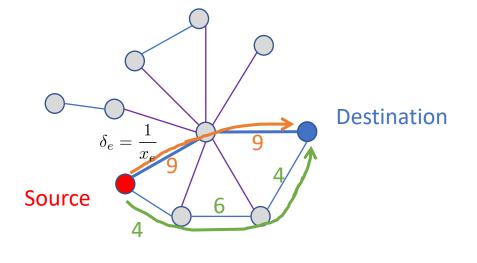
Route visualization: Normalized number of packets over links in 500 steps

Can we do better than shortest hop distance bias?

* M. Neely, E. Modiano, and C. Rohrs, "Dynamic power allocation and routing for time-varying wireless networks," IEEE J. Sel. Areas Commun., vol. 23, no. 1, pp. 89–103, 2005

Delay-aware shortest path bias based on link duty cycle


 $0 < x_e \leq 1 \qquad e \in \mathcal{E}$


How likely a link is scheduled under current network topology and traffics

Link duty cycle

Per hop distance

Per hop distance with link rate

Link duty cycle estimated by an L-layer graph convolutional neural network (GCNN)

Fully distributed execution

$$\mathbf{x} = \Psi_{\mathcal{G}^c}(\mathbf{1}; oldsymbol{\omega})$$

$$\mathbf{X}_{e*}^{l} = \sigma_l \left(\mathbf{X}_{e*}^{l-1} \, \mathbf{\Theta}_0^l + \left[\mathbf{X}_{e*}^{l-1} - \sum_{u \in \mathcal{N}_{\mathcal{G}^c}(e)} rac{\mathbf{X}_{u*}^{l-1}}{\sqrt{d(e)d(u)}}
ight] \mathbf{\Theta}_1^l
ight)$$

Properties of delay-aware shortest path bias

 $\mathcal{P}(L)$

• Complexity

RICE UNIVERSITY

 $\langle \! \rangle$

- GCNN
- Single source shortest path (SSSP)
- All pairs shortest path (APSP)

- Throughput Optimality
 - Shortest path bias is non-negative and constant
 - Throughput optimality holds

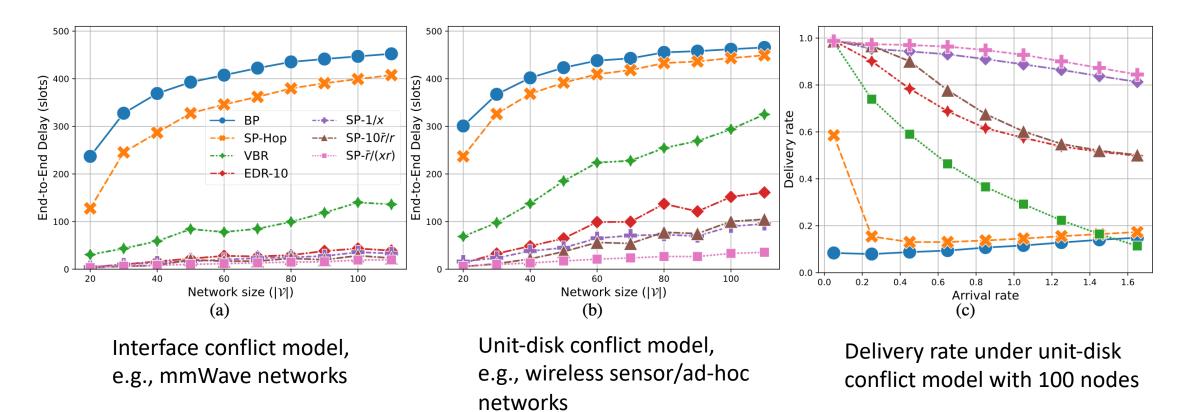
Distributed weighted SSSP and APSP

 $\mathcal{O}(V)$

GCNN and SP algorithms only need to run once a while, when topology changes

BP algorithm can stabilize the queues in the network as long as the arrival rates of flows are within the network capacity region

Training of GCNN


- Draw a network instance
- Find delay-aware shortest path bias with GCNN and APSP
- Run BP routing and collect schedules of each time slot
- Update parameters of GCNN with loss function

Flow arrivals Conflict graph Connectivity graph \mathcal{G}^{raph} Flows Link rates $(\mathcal{G}^n(k), \mathcal{G}^c(k), \mathcal{F}(k), \mathbf{A}(k), \mathbf{R}(k)) \sim \Omega.$ Per-link distance $\mathbf{x}(k) = \Psi_{\mathcal{G}^c(k)}(\mathbf{1}; \boldsymbol{\omega})$, $\mathcal{B}(k)$ Shortest path bias $\mathbf{s}^k(t) \in \{0,1\}^{|\mathcal{E}|}$ Empirical schedule $\ell(\boldsymbol{\omega}) = \mathbb{E}_{\Omega} \left[MSE(\mathbf{x}(k), \mathbb{E}_t(\mathbf{s}^k(t))) \right]$

On 100 random graphs from **2D point process model** T=1000

Conclusion & Future directions

- Delay-aware per-hop distance for biased backpressure routing
 - Link duty cycle

RICE UNIVERSITY

- Conflict-aware (adaptive to network density)
- Significantly improve end-to-end delay & delivery rate
- Keep advantages of shortest hop distance bias
 - Fully distributed execution
 - Minimal increase in complexity
 - Simplicity
 - Low overhead (update only once a while)
- Apply to other routing schemes
- Improved training method