Problem: Repetitive Combinatorial Optimization Problems (R-COP)

Approach: GDGP-Twin – a hybrid ML pipeline for distributed control in networks

1. **Independent R-COP**
 - Optimize each instance individually
 - Goal: reduce optimality gap with minimal overhead

2. **R-COP in graph-based MDP**
 - Inter-state dependency MUST be considered
 - Goal: achieve long-term system-wide objective

Key features
- All distributable components (Actor, Critic, Heuristic)
- Pipeline can generalize to different network topologies
- Constraints guaranteed by the heuristic
- Future returns encoded in cost vector input to heuristic

Key novelty
- Defines vectorized (element-wise) reward and return for network settings
- Critic based on a twin network that predicts element-wise expected returns/outcomes

Test Results

- **Independent R-COP**
 - Maximum Weighted Independent Set
 - Approximation ratio
 - Execution local complexity
 - Training complexity

- **R-COP in graph-based MDP:** Delay-oriented link scheduling
 - Test based on four different R-COPs
 - Approximation ratio
 - Execution local complexity
 - Training complexity

Conclusion

1. A general actor-critic framework
2. Applicable to R-COPs with limited runtime and distributed execution
3. Reduce optimality gap with minimal overhead
4. Enable long-term goal seeking
5. Beyond COP: applicable to general network processes

References: